tomodrgn analyze_volumes =========================== Purpose -------- Run standard volume-space analyses of a ``train_vae`` model: dimensionality reduction and clustering of a volume ensemble. Sample usage ------------ The examples below are adapted from ``tomodrgn/testing/commandtest*.py``, and rely on other outputs from ``commandtest.py`` to execute successfully. .. code-block:: bash # Warp v1 style inputs tomodrgn \ analyze_volumes \ --voldir output/vae_both_sim_zdim2/eval_vol_allz \ --config output/vae_both_sim_zdim2/config.pkl \ --outdir output/vae_both_sim_zdim2/eval_vol_allz_analyze_volumes_mask_soft \ --ksample 20 \ --mask soft # WarpTools style inputs tomodrgn \ analyze_volumes \ --voldir output/vae_warptools_70S_zdim2/eval_vol_allz \ --config output/vae_warptools_70S_zdim2/config.pkl \ --outdir output/vae_warptools_70S_zdim2/eval_vol_allz_analyze_volumes_mask_soft \ --ksample 20 \ --mask soft Arguments --------- .. argparse:: :ref: tomodrgn.commands.analyze_volumes.add_args :prog: analyze_volumes :nodescription: :noepilog: Common next steps ------------------ * Interactively explore correlations between and spatial context of star file parameters, latent embeddings, volume space dimensionality reduction in the ``tomodrgn analyze`` Jupyter notebooks * Identify one (or more) sets of particle indices whose particles share a common feature (e.g. in volume space) * Filter the input star file by particle indices with ``tomodrgn filter_star`` * Generate an array of numeric labels describing a volume space property for each particle to color volumes in tomogram mapbacks with ``tomodrgn subtomo2chimerax``