tomodrgn convergence_vae =========================== Purpose -------- Evaluate convergence of a ``train_vae`` model by stability of latent space and reconstructed volumes. Sample usage ------------ The examples below are adapted from ``tomodrgn/testing/commandtest*.py``, and rely on other outputs from ``commandtest.py`` to execute successfully. .. code-block:: bash # Warp v1 style inputs tomodrgn \ convergence_vae \ output/vae_both_sim_zdim8_dosetiltweightmask_batchsize8 \ --final-maxima 2 \ --ground-truth data/10076_class*_32.mrc # WarpTools style inputs tomodrgn \ convergence_vae \ output/vae_warptools_70S_zdim8_dosetiltweightmask_batchsize8 \ --final-maxima 2 \ --ground-truth data/warptools_test_box-32_angpix-12_reconstruct.mrc Arguments --------- .. argparse:: :ref: tomodrgn.commands.convergence_vae.add_args :prog: convergence_vae :nodescription: :noepilog: Common next steps ------------------ * Extend model training with ``tomodrgn train_vae [...] --load latest`` if not yet converged * Analyze model at a particular epoch in latent space with ``tomodrgn analyze`` * Analyze model at a particular epoch in volume space with ``tomodrgn analyze_volumes``