tomodrgn eval_images =========================== Purpose -------- Embed images to latent space using a pretrained ``train_vae`` model (i.e. evaluating encoder modules only). Sample usage ------------ The examples below are adapted from ``tomodrgn/testing/commandtest*.py``, and rely on other outputs from ``commandtest.py`` to execute successfully. .. code-block:: bash # Warp v1 style inputs tomodrgn \ eval_images data/10076_classE_32_sim.star \ --source-software cryosrpnt \ --weights output/vae_classE_sim_zdim8/weights.pkl \ -c output/vae_classE_sim_zdim8/config.pkl \ --out-z output/vae_classE_sim_zdim8/eval_images/z_all.pkl # WarpTools style inputs tomodrgn \ eval_images \ data/warptools_test_4-tomos_10-ptcls_box-32_angpix-12_optimisation_set.star \ --weights output/vae_warptools_70S_zdim8/weights.pkl \ -c output/vae_warptools_70S_zdim8/config.pkl \ --out-z output/vae_warptools_70S_zdim8/eval_images/z_all.pkl Arguments --------- .. argparse:: :ref: tomodrgn.commands.eval_images.add_args :prog: eval_images :nodescription: :noepilog: Common next steps ------------------ * Analyze model at a particular epoch in latent space with ``tomodrgn analyze`` * Analyze model at a particular epoch in volume space with ``tomodrgn analyze_volumes`` * Generate volumes for all particles at a particular epoch with ``tomodrgn eval_vol`` * Map back generated volumes (for all particles) to source tomograms to explore spatially contextualized heterogeneity with ``tomodrgn subtomo2chimerax``