tomodrgn filter_star =========================== Purpose -------- Filter a star file by selected particle indices or by selected class labels. Sample usage ------------ The examples below are adapted from ``tomodrgn/testing/commandtest*.py``, and rely on other outputs from ``commandtest.py`` to execute successfully. .. code-block:: bash # Warp v1 style inputs -- image series star file filtered by particle indices tomodrgn \ filter_star \ data/10076_both_32_sim.star \ --starfile-type imageseries \ --tomo-id-col _rlnImageName \ --ind data/ind_ptcl_first10last10.pkl \ -o output/10076_both_32_sim_filtered.star # Warp v1 style inputs -- image series star file filtered by class labels tomodrgn \ filter_star \ data/10076_both_32_sim.star \ --starfile-type imageseries \ --tomo-id-col _rlnImageName \ --labels data/labels_D-0_E-1.pkl \ --labels-sel 0 \ -o output/10076_both_32_sim_filtered_by_labels.star # Warp v1 style inputs -- volume series star file filtered by class labels tomodrgn \ filter_star \ data/10076_both_32_sim_vols.star \ --starfile-type volumeseries \ --tomo-id-col _rlnImageName \ --labels data/labels_D-0_E-1.pkl \ --labels-sel 0 1 \ -o output/10076_both_32_sim_vols_filtered_by_labels.star # WarpTools style inputs -- filtered by class labels tomodrgn \ filter_star \ data/warptools_test_4-tomos_10-ptcls_box-32_angpix-12_optimisation_set.star \ --starfile-type optimisation_set \ --tomo-id-col _rlnTomoName \ --labels output/vae_warptools_70S_zdim8_dosetiltweightmask_batchsize8/analyze.39/kmeans20/labels.pkl \ --labels-sel 0 1 2 3 4 \ -o output/warptools_70S_filtered_by_labels_optimisation_set.star Arguments --------- .. argparse:: :ref: tomodrgn.commands.filter_star.add_args :prog: filter_star :nodescription: :noepilog: Common next steps ------------------ * Validate that the filtered particle subset is structurally homogeneous for the tomoDRGN-identified feature with ``tomodrgn backproject_voxel`` * Export this particle subset to external STA software * Train a new model on this subset of particles with ``tomodrgn train_vae`` to explore residual heterogeneity