tomodrgn graph_traversal =========================== Purpose -------- Identify particle indices forming the most efficient path through latent space, while connecting specified starting and ending points by way of specified anchor points. Sample usage ------------ The examples below are adapted from ``tomodrgn/testing/commandtest*.py``, and rely on other outputs from ``commandtest.py`` to execute successfully. .. code-block:: bash # Warp v1 style inputs tomodrgn \ graph_traversal \ output/vae_both_sim_zdim8_dosetiltweightmask_batchsize8/z.39.train.pkl \ --anchors 5 10 15 20 \ -o output/vae_both_sim_zdim8_dosetiltweightmask_batchsize8/graph_traversal \ --max-neighbors 20 \ --avg-neighbors 20 # WarpTools style inputs tomodrgn \ graph_traversal \ output/vae_warptools_70S_zdim8_dosetiltweightmask_batchsize8/z.39.train.pkl \ --anchors 5 10 15 20 \ -o output/vae_warptools_70S_zdim8_dosetiltweightmask_batchsize8/graph_traversal \ --max-neighbors 20 \ --avg-neighbors 20 Arguments --------- .. argparse:: :ref: tomodrgn.commands.graph_traversal.add_args :prog: graph_traversal :nodescription: :noepilog: Common next steps ------------------ * Validate the inferred latent space graph traversal by isolating indices of particles proximal to each neighbor point or anchor point along the path, and performing homogeneous reconstructions with ``tomodrgn backproject_voxel`` or external STA software