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UM Cryo-ET Workshop 
Wednesday 6/12: TomoDRGN 
 

Overview 
TomoDRGN is a deep learning tool for analyzing structural heterogeneity among particles 
imaged by cryogenic electron tomography (cryo-ET). TomoDRGN was developed as an extension 
from cryoDRGN, which has been widely applied to characterize structural heterogeneity in 
cryogenic electron microscopy (cryo-EM) datasets.  
 
The core functionality tomoDRGN is comprised of two parts: (1) training a variational 
autoencoder neural network to learn structural heterogeneity among a dataset of particles that 
have been previously aligned by sub-tomogram averaging (STA), and (2) analyzing that model to 
identify structural heterogeneity trends and groups, quantifiable down to a per-particle level. 
The tomoDRGN network can be analyzed in both “latent space” (a low dimensional vector that 
summarizes the unique structural state of each particle) and in “volume space” (the real space 
3-D volume unique to each particle). Useful insights may be gleaned from manually examining 
this structural heterogeneity directly within tomoDRGN, systematically quantifying 
heterogeneous states among the ensemble of volumes with tools such as MAVEn and SIREn, 
separating structurally distinct classes of particles for subsequent STA refinement, and 
correlating structurally heterogeneous states with spatial localization and geometry in the 
source tomograms.  
 
This tutorial guides users through use of tomoDRGN in analyzing a widely used benchmark 
dataset: ribosomes imaged in sub-lethally chloramphenicol treated Mycoplasma pneumoniae 
cells (EMPIAR-10499). The tutorial illustrates the types of analyses performed in tomoDRGN’s 
primary methods manuscript1. All inputs and outputs to this tutorial are available from EMPIAR-
10499, EMPIAR-11843, and Zenodo, while the tomoDRGN software itself is available from 
GitHub.  
 
References: 
1. Powell, B.M., Davis, J.H. Learning structural heterogeneity from cryo-electron sub-tomograms 

with tomoDRGN. Nature Methods (2024). https://doi.org/10.1038/s41592-024-02210-z 
2. Powell, B.M.; Brant, T.S.; Davis, J.H.; Mosalaganti, S. Rapid structural analysis of bacterial 

ribosomes in situ. bioRxiv (2024). https://doi.org/10.1101/2024.03.22.586148  
  

https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1101/2024.03.22.586148


 2 

Table of Contents 
 
Overview ......................................................................................................................................... 1 

Table of Contents ............................................................................................................................ 2 

1. Initialize the computational environment .................................................................................. 3 

2. Obtain raw data ........................................................................................................................... 4 

3. Validate particle extraction ......................................................................................................... 8 

4. Train a full tomoDRGN network ................................................................................................ 10 

5. Analyze the trained model to identify non-ribosomal particles ............................................... 11 

6. Alternative visualizations and particle identification strategies ............................................... 17 

7. Train a tomoDRGN network on a particle subset ..................................................................... 19 

8. Identify ribosomal structural heterogeneity ............................................................................. 20 

9. Validate interesting state particles ............................................................................................ 23 

10. Iterative identification and refinement of species in RELION / M .......................................... 25 

11. Train a tomoDRGN network on a particle subset at intermolecular scale.............................. 27 

12. Identify intermolecular structural heterogeneity ................................................................... 28 

13. Validate membrane-associated ribosomes ............................................................................. 31 

14. Map tomoDRGN-generated intermolecular volumes to tomogram spatial context .............. 34 

15. Map tomoDRGN-generated intramolecular volumes to tomogram spatial context .............. 37 

What might come next? ................................................................................................................ 39 

Frequently asked questions .......................................................................................................... 40 

Supplemental: voxel_pca_umap.py .............................................................................................. 43 

  



 3 

1. Initialize the computational environment 
This tutorial requires the following software: 

• tomoDRGN: https://www.github.com/bpowell122/tomodrgn (v0.2.2) 

• RELION:  https://github.com/3dem/relion  

• ChimeraX: https://www.rbvi.ucsf.edu/chimerax/  
 
You may find it useful to have a few terminals open while proceeding through this tutorial so as 
to avoid having to re-load each software at various points. 
 

Terminal-1 (tomoDRGN) 
$ mkdir /work/participant/tomodrgn_tutorial/ 

$ cd /work/participant/tomodrgn_tutorial/ 

$ source ~/conda_init.sh 

$ conda activate tomodrgn 

 

Terminal-2 (tomoDRGN Jupyter notebook) 
$ cd /work/participant/tomodrgn_tutorial/ 

$ source ~/conda_init.sh 

$ conda activate tomodrgn 

$ jupyter notebook  
Note: this may launch a web page that asks for a token that does not exist. If so, 
you can create a password first, then re-launch jupyter: 
$ jupyter notebook password 
Enter any password you choose (e.g. `cryoet`), then enter that password a second time 
to confirm. 
$ jupyter notebook 
Now the Jupyter notebook browser page should ask for a password instead of a token. 
Enter the password you just set. 

 

Terminal-3 (RELION) 
$ module load relion 

$ cd /work/participant/tomodrgn_tutorial/ 

 

Terminal-4 (ChimeraX) 
$ chimerax 

 

 

Note that the DCV Viewer application may rebind copy and paste. On my Mac, copy/paste is 
rebound to [command]+[shift]+[C/V] 

  

https://www.github.com/bpowell122/tomodrgn
https://github.com/3dem/relion
https://www.rbvi.ucsf.edu/chimerax/


 4 

2. Obtain raw data 
Several input data types from upstream processing are required to take full advantage of 
tomoDRGN’s heterogeneity analysis, validation, and iterative processing potential. However, 
only some files are required for minimal functionality. 
 
Strictly required 

1. “Image series” / “particle series” subtomograms  

• Real-space 2-D projection images of each particle used by tomoDRGN 

• Warp and M offer this option via “Subtomogram Extraction > Image series” 
2. Star file metadata for “image series” subtomograms 

• RELION v3 star file (i.e. no data_optics block due to Warp/M compatibility) 

• Each tilt image is referenced by one row. Tilt images of the same particle are 
identified by the rlnGroupName column 

Strongly recommended 
3. “Volume series” subtomograms 

• Real-space 3-D subtomograms of each particle used in RELION to validate 
structurally distinct particle sets 

• Warp and M default to this via “Subtomogram Extraction > Volume series” 
4. Star file metadata for “volume series” subtomograms 

• RELION v3 star file (i.e. no data_optics block due to Warp/M compatibility) 

• Each particle is referenced by one row.  
 

From EMPIAR and Zenodo 
Both particle series and volume series subtomograms are pre-extracted and are publicly 
available for EMPIAR-10499 as described in the tomoDRGN methods paper: 
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Pre-trained tomoDRGN models trained on these datasets are publicly available on Zenodo as 
described in the tomoDRGN methods paper: 

 
 
This tutorial will use a subset of the deposited datasets and models: 

• https://www.ebi.ac.uk/empiar/EMPIAR-11843/ 
o 11843/data/particleseries_box96_angpix3.7 (31 GB) 
o 11843/data/subtomo_box64_angpix6  (33 GB) 
o 11843/data/particleseries_box200_angpix3.7  (136 GB) 
o 11843/data/subtomo_box192_angpix4_train30_kmeans100_secdfribos_380ptcls 

 (15 GB) 
o 11843/data/starfiles  (883 MB) 

• https://zenodo.org/records/10093310 
o files/04_dataset_empiar_10499.zip  (17 GB) 

 

  

https://www.ebi.ac.uk/empiar/EMPIAR-11843/
https://zenodo.org/records/10093310
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From particle extraction in Warp or M 
Image series and volume series subtomograms can be extracted for your own datasets from Warp 
or M as follows: 
 
Warp: In tomostar mode, select “export sub-tomograms”. Select the star file specifying particle 
locations to extract. The important parameter to set for tomoDRGN’s inputs is to choose either 
“volumes” or “image series”. The first option produces “volume series” subtomograms (3-D 
subtomogram volumes and CTF volumes suitable for refinement in RELION v3) or “image series” 
subtomograms (2-D projection images of each particle suitable for training tomoDRGN models), 
respectively. We recommend extracting both image series and volume series of the same 
particles such that you can do both tomoDRGN model training and subsequent particle subset 
validations and refinements. All other extraction parameters should be set following the Warp 
User’s Guide http://www.warpem.com/warp/?page_id=169.  
 

 
 
  

http://www.warpem.com/warp/?page_id=169
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M: Right click on the particle count of the species to export, and select “export particles”. 
Choose either “volumes” or “image series” for particle export as “volume series” or “image 
series”, respectively. Other parameters should be set following the Warp Users’s Guide 
http://www.warpem.com/warp/?page_id=169. 
 

 

  

http://www.warpem.com/warp/?page_id=169
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3. Validate particle extraction 
Purpose 
Once you have extracted (or downloaded a pre-extracted) subtomogram particleseries, it’s a 
good idea to validate that the extraction worked correctly. Specifically, we’re checking that the 
particle coordinates and poses used for extraction align with those used previously for STA. A 
quick way to confirm successful particle extraction is to generate a homogeneous 
reconstruction of the extracted particles, either via tomodrgn backproject_voxel or tomodrgn 

train_nn.  
 

Performing a homogeneous reconstruction via backproject_voxel 
TomoDRGN’s backproject_voxel uses the specified particles to output an unfiltered consensus 
volume.  

Terminal 
$ mkdir 01_backproject 

 

$ tomodrgn backproject_voxel \ 
/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star \ 
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7 \ 
--first 5000 \ 
-o 01_backproject/backproject_first5000.mrc 

Timing: 1 minute 

 

$ relion_image_handler --i 01_backproject/backproject_first5000.mrc \ 
 --o 01_backproject/backproject_first5000_lowpass30.mrc \ 
 --lowpass 30 
 

Chimerax:  
Open backproject_first5000_lowpass30.mrc 
 

 
 
The unfiltered backprojection of the first 5000 particle images is very noisy. After applying a 
strong lowpass filter, we clearly see ribosomal features. We can also notice that the data has the 
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correct dark/light convention (which we could (un)invert with --uninvert-data).  TomoDRGN’s 
backproject could be made less noisy by using more images (increasing the value passed to  
--first) or targeted to specific particles with --ind.  
 

Performing a homogeneous reconstruction via train_nn 
TomoDRGN’s train_nn trains a decoder-only neural network using the specified particles to 
output a homogeneous consensus volume (i.e., no latent space or structural heterogeneity is 
learned). This is generally a legacy tool, and we recommend validating particle extraction with 
backproject_voxel instead. However, this command will introduce you to some of the 
arguments and outputs that will be produced for the full heterogeneous tomodrgn model 
training. 
 

Terminal 
$ tomodrgn train_nn \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star  \ 
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \ 
--outdir 02_train_nn \ 
--dim 512 \ 
--layers 3 \ 
-n 50 \ 
--l-dose-mask 

Timing: 10 mins to load, 10 mins per epoch, can kill partway through via [control]+[c] 
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4. Train a full tomoDRGN network 
Purpose 
Learning structural heterogeneity from a dataset is the core functionality of tomoDRGN. This 
requires training a neural network from scratch for each dataset to learn the structural 
heterogeneity features unique to a particular set of particles’ images. Additional / iterative 
rounds of model training on progressively-smaller particle subsets are possible for deeper 
analyses.  
 

Terminal 
$ tomodrgn train_vae \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star  \ 
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \ 

--outdir 03_train_vae \ 

--enc-dim-A 256 \ 

--enc-layers-A 3 \ 

--out-dim-A 128 \ 

--enc-dim-B 256 \ 

--enc-layers-B 3 \ 

--zdim 128 \ 

--dec-dim 256 \ 

--dec-layers 3 \ 

-n 50 \ 

--l-dose-mask \ 

--recon-dose-weight \ 

--recon-tilt-weight  

Timing: 5 mins to load, 10 mins per epoch, kill partway through 
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5. Analyze the trained model to identify non-ribosomal particles 
Purpose 
The input dataset very likely contains non-ribosomal particles (e.g. other macromolecules, 
membranes, ice, metallic sputter, random noise). TomoDRGN’s expressive model can aid in 
robustly detecting and removing these particles which otherwise consume the model’s 
representation capacity of true ribosomal structural heterogeneity. We can separate “good” 
from “non-ribosomal” particles by a variety of methods in latent or real space. We describe and 
illustrate several of these methods here, as some may work better or worse on your particular 
dataset. 
 

Standard tomoDRGN model analysis 
We first copy the model weights and resulting particle latent embeddings from the 49th epoch 
of training that were precalculated for you.   

Terminal: 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian/weights.49.pkl 03_train_vae/ 
 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian/z.49.pkl 03_train_vae/ 

 

$ tomodrgn analyze \ 

03_train_vae \ 

49 \ 

--Apix 3.7 \ 

--flip \ 

--ksample 100 

Timing: 1 minute 

 

 
 
The tomodrgn analyze command evaluates a particular model (here, 03_train_vae) at a particular 
epoch of training (here, epoch 49). The latent embeddings of all particles are subjected to 
principal component analysis (z_pca.png) and UMAP (umap.png, umap.pkl) dimensionality 
reduction. Volumes are generated from latent embeddings that sample deciles along each of 
the first two latent space principal component axes  (pc1/, pc2/). The latent space is more 
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broadly sampled by k-means clustering, and the centroid latent embedding of each k-means 
class is used to generate “k100 centroid volumes”.  
 
The k100 centroid volumes are useful to visually inspect the types of structural heterogeneity 
learned from the dataset. Increasing the number of k-means clusters will give more granular 
insights to per-particle structural heterogeneity at the trade-off of requiring more manual 
inspection to characterize. Due to the random initialization of the k-means sampling, we will use 
pre-generated k-means classes from Zenodo to be consistent in further analysis. 
 
$ cp -R 

/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3_128_256x3_

128_256x3_b1_gaussian/analyze.49 03_train_vae/analyze.49.published 

 
$ cp 03_train_vae/analyze.49/tomoDRGN_viz+filt.ipynb  

03_train_vae/analyze.49.published/tomoDRGN_viz+filt.ipynb 

 

Identify non-ribosomal particles by visual inspection of k100 volumes 

ChimeraX 
open “03_train_vae/analyze.49.published/kmeans100/*.mrc” 

volume all level 0.018 

surface dust all size 6 

mseries slider all 

visually inspect for 70S / 50S / non-ribosomal 

 my k100 labels for non-ribosomal:  

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92, 93  
my k100 labels for 50S: 
94, 95, 96, 97, 98, 99 
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Flip through the mseries to see all 100 volumes. Note large and systematic changes of density. 
At this stage we’re aiming to annotate “ribosomal” (which could be 50S or 70S) separate from 
“non-ribosomal”. These junk particles are generally noisy, have less defined structure than good 
particles, and can have very large or small density at a reasonable isosurface for the good 
particles.   
 
Keep in mind that tomoDRGN indexes volumes in a 0-based system, but the mseries is 1-
indexed!  
 
Sometimes it can be easier to see large scale systematic differences by tiling all volumes instead 
of flipping through an mseries. 
show all 

tile all columns 10 

 

 
 
 

Generate indices of good particles based on k100 annotation 
Good particle indices can be generated with the standard analysis Jupyter notebook (which 
offers more features, visualizations, and alternative filtering options), or directly at the 
command line via a few python commands (which can be more convenient for quick 
annotation).  
 

Jupyter notebook 
Open in jupyter 03_train_vae/analyze.49/tomoDRGN_viz+filt.ipynb 
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See this page for a useful reference of Jupyter notebook tools: 
https://www.edureka.co/blog/wp-
content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf  
 

 
 

When reading in kmeans100, update path to: 
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl') 

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt') 

 
 

When reading in volumeseries star file, set path to: 
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star' 

 
 

When selecting particles based on k-means clustering, set clusters to: 
cluster_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92, 93]  

https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
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Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers” 
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are 
carried forward. The important thing is to make sure that the cell in the screenshot above is run 
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids 
variable correctly. 
 
Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive 
selection”, “view tilt images from selected particles”, and “View particle distributions in 
tomogram context” sections (do not have tomograms available) 
 
Note that there is a bug with interactive selection in some versions of jupyter notebook and 
associated widgets that causes the notebook to stop producing output after the interactive 
plotting + selection cell has been run. To recover from this, restart the notebook (and return to 
the beginning of the Jupyter notebook section of this tutorial).  
 
In “Save selection indices” section, update selection/not: 
ind_keep = ind_selected_not  

ind_bad = ind_selected 

 
 

Finish with saving ind_keep and ind_bad pkl files.  

 
 
Don’t close notebook yet! 
 

Terminal: 
$ python 
>>> import numpy as np 
>>> from tomodrgn import utils 
>>> k100_labels = 
utils.load_pkl(‘03_train_vae/analyze.49.published/kmeans100/labels.pkl') 
>>> labels_nr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92, 
93] 
>>> ind_nr = [ind for ind, label in enumerate(k100_labels) if label in labels_nr] 



 16 

>>> ind_nr = np.array(ind_nr) 
>>> utils.save_pkl(ind_nr, ‘03_train_vae/ind_nr.1310_particles.pkl') 
>>> ind_ribo = [ind for ind, label in enumerate(k100_labels) if label not in 
labels_nr] 
>>> ind_ribo = np.array(ind_ribo) 
>>> utils.save_pkl(ind_ribo, ‘03_train_vae/ind_ribo.20981_particles.pkl') 
>>> exit()  
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6. Alternative visualizations and particle identification strategies 
Purpose 
While particles of distinct structural states can often be well separated by the latent space k100 
sampling described above, alternative approaches are possible and may work better for other 
datasets. These include latent space gaussian mixture model (GMM) clustering, latent space 
outlier identification, and volume space voxel PCA and UMAP.  
 

Latent space analysis 
The latent space can be analyzed and grouped by any number of clustering approaches. The 
Jupyter notebook includes support for latent space GMM clustering, and other clustering 
approaches can be used. The magnitude of each particle’s latent encoding can also be 
correlated with “junk” particle identity, whereby junk particles can have latent embeddings on 
the periphery of the main distribution centered near zero.  
 

Jupyter notebook 
Try different clustering settings and random seeds in the “GMM clustering” section. 
Try different zscore latent magnitude cutoffs in the “Filter by latent outliers” section. 
 

Volume space analysis 
While the latent space learned by tomoDRGN is a low dimensional representation of the 
structural heterogeneity captured by each dataset, sometimes directly analyzing the ensemble 
of tomoDRGN-generated heterogeneous volumes can give more direct and informative insights. 
Here we analyze a volume ensemble of all 22,291 unique particles (at box size 32px) by PCA (to 
the first 128 components) followed by UMAP dimensionality reduction. A volume ensemble 
generated in this way can also be used as inputs to MAVEn or SIREn.  
 

Terminal 
$ mkdir 03_train_vae/analyze.49.published/all_vols_box32 

 

$ tomodrgn eval_vol -w 03_train_vae/weights.49.pkl \ 

-c 03_train_vae/config.pkl \ 

-o 03_train_vae/analyze.49.published/all_vols_box32 \ 

--zfile 03_train_vae/z.49.pkl \ 

--downsample 32 \ 

--Apix 11.1 \ 

--flip \ 

-b 64 

Timing: ~3 minutes 

 

$ python /sw/tomodrgn/0.2.2/utils/voxel_pca_umap.py \ 

--vol-dir 03_train_vae/analyze.49.published/all_vols_box32 \ 

--out-dir 03_train_vae/analyze.49.published/all_vols_box32_analysis \ 

--num-pcs 128 

Timing: ~5 mins  
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The per-particle volume space voxel-pca-umap embeddings can also be loaded into the Jupyter 
notebook for interactive analysis or to use as the basis for clustering (rather than the latent 
space embeddings).  
 
Create a new cell in the Jupyter notebook at the better of the “Interactive visualization” section. 
Insert and run the following code: 
voxel_pca_umap = 

utils.load_pkl(‘03_train_vae/analyze.49.published/all_vols_box32_analysis/voxel_pc_umap.pkl’) 

df_merged[‘voxel_pca_umap1’] = voxel_pca_umap[:,0] 

df_merged[‘voxel_pca_umap2’] = voxel_pca_umap[:,1] 

 

You could at this point create many types of plots, clustering, etc by cross referencing the many 
metadata details available for each particle in the df_merged dataframe.  
 

Now can close notebook :) 
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7. Train a tomoDRGN network on a particle subset 
Purpose 
Now that the non-ribosomal particles have been identified, we can train a new tomoDRGN 
model on a more purely-ribosomal particle stack to more fully leverage the learning capacity of 
the network. 
 

Terminal 
$ tomodrgn train_vae \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star  \ 
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \ 

--ind 03_train_vae/ind_keep.20981_particles.pkl \ 

--outdir 04_train_vae_filtered \ 

--enc-dim-A 256 \ 

--enc-layers-A 3 \ 

--out-dim-A 128 \ 

--enc-dim-B 256 \ 

--enc-layers-B 3 \ 

--zdim 128 \ 

--dec-dim 256 \ 

--dec-layers 3 \ 

-n 50 \ 

--l-dose-mask \ 

--recon-dose-weight \ 

--recon-tilt-weight  

Timing: 5 mins to load, 10 mins per epoch, kill partway through 
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8. Identify ribosomal structural heterogeneity 
Purpose 
Equipped with a tomoDRGN model trained on a purely-ribosomal dataset, we can now analyze 
that model for structural heterogeneity. This analysis will use many of the same commands and 
tools introduced earlier in the non-ribosomal particle filtration section  
 

Standard tomoDRGN model analysis 

Terminal: 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/weights.49.pkl 04_train_vae_filtered/ 
 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/z.49.pkl 04_train_vae_filtered/ 

 

$ tomodrgn analyze \ 

04_train_vae_filtered \ 

49 \ 

--Apix 3.7 \ 

--flip \ 

--ksample 100 

Timing: 1 minute 

 
As described earlier for the non-ribosomal particle analysis, due to the randomness of the k-
means clustering during tomodrgn analyze, we will examine k100 volumes from a precomputed 
analysis for consistent analysis. 
 
$ cp -R 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/analyze.49 
04_train_vae_filtered/analyze.49.published 

 
$ cp 04_train_vae_filtered/analyze.49/tomoDRGN_viz+filt.ipynb  
04_train_vae_filtered/analyze.49.published/tomoDRGN_viz+filt.ipynb 

 

Identify biologically interesting states by visual inspection of k100 volumes 
At this stage of analysis, we expect to see extensive ribosomal structural heterogeneity. This will 
principally involve heterogeneity related to translational states (A- and P- site tRNAs, EF-Tu 
bound T-site tRNA) 

ChimeraX 
open “04_train_vae_filtered/analyze.49.published/kmeans100/*.mrc” 

volume all level 0.013 

surface dust all size 6 

mseries slider all 

visually inspect for biologically interesting states 
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 50S: vol_005.mrc vs vol_021.mrc 

SSU rotation with H17 motion: vol_021.mrc vs vol_023.mrc 

P-only: vol_031.mrc or vol_093.mrc 

EFTu-P: vol_023.mrc 

AP: vol_012.mrc 

peripheral density: vol_088.mrc 

visually inspect for 50S or EF-Tu k100 classes: 

 my k100 labels for 50S 

 2, 3, 4, 5, 7, 9 

 My k100 labels for EF-Tu 

 22, 23, 24, 25, 26, 27, 28, 29, 33, 61, 62, 75, 88 

 

 
 
It can be very useful to have an atomic model to guide interpretation of heterogeneous volumes 
(where do you observe extra density unaccounted for by the model, where is the model fitting 
the density well, etc.). This dataset was originally used to solve PDBs: 7ph9, 7pha, 7phb, 7phc. 
You can easily open atomic models in ChimeraX with: 
 
open 7phb from pdb 

 

Generate 50S particle indices from k100 annotation 
As above when identifying good vs non-ribosomal particle indices, we illustrate both a more 
flexible and comprehensive Jupyter notebook based method for generating indices, and a quick 
interactive python session method as well. 
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Jupyter notebook 
Open in jupyter 
04_train_vae_filtered/analyze.49/tomoDRGN_viz+filt.ipynb 

 

When reading in kmeans100, update path to: 
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl') 

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt') 

 

When reading in volumeseries star file, set path to: 
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star' 

 

When selecting particles based on k-means clustering, set clusters to: 
cluster_ids = [2, 3, 4, 5, 7, 9]  

 
Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers” 
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are 
carried forward. The important thing is to make sure that the cell in the screenshot above is run 
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids 
variable correctly. 
 
Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive 
selection”, “view tilt images from selected particles”, and “View particle distributions in 
tomogram context” sections (do not have tomograms available) 
 

Update the path naming the indices to save: 
SAVE_PATH = f'{WORKDIR}/ind_keep.{len(ind_keep)}_particles_50S.pkl' 

 
 

Terminal: 
$ python 

>>> import numpy as np 
>>> from tomodrgn import utils 
>>> k100_labels = 
utils.load_pkl(‘04_train_vae_filtered/analyze.49.published/kmeans100/labels.pkl') 

>>> labels_50S = [2, 3, 4, 5, 7, 9] 
>>> ind_50S = [ind for ind, label in enumerate(k100_labels) if label in labels_50S] 
>>> ind_50S = np.array(ind_50S) 
>>> ind_reindexing = utils.load_pkl(‘03_train_vae/ind_keep.20981_particles.pkl') 
>>> ind_50S_reindexed = ind_reindexing[ind_50S] 
>>> utils.save_pkl(ind_50S, ‘04_train_vae_filtered/ind_50S.615_particles.pkl') 
>>> exit()  
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9. Validate interesting state particles 
Purpose 
While we have yet to observe a “structural hallucination” produced by tomoDRGN across 
several datasets, it is a reassuring good practice to validate observed structural heterogeneity of 
a subset of particles by performing a more traditional reconstruction of that particle subset to 
reproduce that particular structural state. Here we illustrate this process for the 50S ribosomal 
subunit population of the dataset. 
 

Filter volume series star file by 50S particle indices 
As the volume series star file can be used for downstream analysis in RELION, it is convenient to 
filter it to the particles of the structural state in question (here, 50S ribosomes).  

Terminal 
$ tomodrgn filter_star \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \ 

--ind 04_train_vae_filtered/ind_keep.615_particles_50S.pkl \ 

--ptcl-id-col index \ 

-o 04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star 

 

Validate structural state of isolated particles  
We next perform a homogeneous reconstruction of the specified 50S particles using RELION to 
validate their 50S structural state. 

Terminal 
$ mkdir -p 04_train_vae_filtered/validation/backproject_50S 

 

$ sed -i 's/..\/subtomo_box64_angpix6/\/data\/EMPIAR-11843\/data\/subtomo_box64_angpix6/g' 

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star 

 

$ mpirun -n 9 relion_reconstruct_mpi \ 
--i 

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star \ 
--o 

04_train_vae_filtered/validation/backproject_50S/10499_22k_box64_angpix6_volumeseries_615_
particles_50S_reconstruct.mrc \ 

--3d_rot \ 
--ctf \ 
--maxres 15 

Timing: 1 minute 
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10. Iterative identification and refinement of species in RELION / M 
Purpose 
Once a set of particles bearing distinct structural features have been identified (using 
tomoDRGN) and validated (using RELION or other traditional reconstruction approaches), one 
may want to improve particle STA parameters following this new structural reference model. 
This is typically done in RELION and/or M. 
 

Isolate 50S particles 
We already did this above when we filtered the volume series star file to just 50S particles!  
 

Run RELION 3D auto refine 
Because the 50S ribosome is so substantially different than the 70S against which it was refined 
by STA, it is worthwhile to re-refine the 50S particles against a 50S reference volume to produce 
optimal particle poses. 

Terminal 
$ mkdir 04_train_vae_filtered/validation/refine3d_50S 

 

$ mpirun -n 9 --bind-to none relion_refine_mpi \ 
--i 

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star \ 

--o 04_train_vae_filtered/validation/refine3d_50S/run 

--ref 

04_train_vae_filtered/validation/backproject_50S/10499_22k_box64_angpix6_volumeseries_615_
particles_50S_reconstruct.mrc \ 

--auto_refine \ 

--split_random_halves \ 

--firstiter_cc \ 

--ini_high 60 \ 

--dont_combine_weights_via_disc \ 

--preread_images  \ 

--pool 3 \ 

--pad 2  \ 

--skip_gridding  \ 

--ctf \ 

--particle_diameter 300 \ 

--flatten_solvent \ 

--zero_mask \ 

--oversampling 1 \ 

--healpix_order 2 \ 

--auto_local_healpix_order 4 \ 

--offset_range 5 \ 

--offset_step 2 \ 

--sym C1 \ 

--low_resol_join_halves 40 \ 

--norm \ 

--scale  \ 
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--j 4 \ 

--gpu "" \ 

--preread_images 

Timing: ~20 minutes (18A unmasked FSC final) 

 
We could also import into M and refine as a distinct species (preferably alongside the 70S 
particles to constrain the refinement).  
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11. Train a tomoDRGN network on a particle subset at intermolecular 
scale 
Purpose 
The ribosomal heterogeneity model analyzed earlier by k100 volume inspection contained 
several volumes bearing features that appeared truncated by the limits of the reconstructed 
box. As these ribosomal particles were imaged in situ in a cell, such particle-adjacent density 
could plausibly derive from systematic intermolecular structural heterogeneity of the immediate 
structural neighborhood of each ribosome. To better characterize this intermolecular 
heterogeneity, we can re-extract our particles at a larger real space box size and train a new 
tomoDRGN model to learn and analyze intermolecular heterogeneity. 
 
All 22,291 particles were pre-extracted at box size 200px and pixel size 3.7Å/px and are available 
from EMPIAR-11843. This means we need to apply the same particle filtering indices that we 
derived in the 03_train_vae analysis.  
 

Terminal 
$ tomodrgn train_vae \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box200_angpix3.7.star \ 

--datadir /data/EMPIAR-11843/data/particleseries_box200_angpix3.7 \ 

--ind 03_train_vae/ind_keep.20981_particles.pkl \ 

--outdir 05_train_vae_intermol_filtered \ 

--enc-dim-A 256 \ 

--enc-layers-A 3 \ 

--out-dim-A 128 \ 

--enc-dim-B 256 \ 

--enc-layers-B 3 \ 

--zdim 128 \ 

--dec-dim 256 \ 

--dec-layers 3 \ 

-n 50 \ 

--l-dose-mask \ 

--recon-dose-weight \ 

--recon-tilt-weight \ 

--lazy 

Timing: ~5 mins to load, ~100 mins per epoch (due to lazy, due to 129 GiB RAM requirement), kill partway 

through 
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12. Identify intermolecular structural heterogeneity  
Purpose 
As is hopefully becoming familiar, once we have a trained tomoDRGN model, we will inspect a 
survey of its volumes to see what sorts of heterogeneity have been learned. Here, because we 
trained the model on a larger real space box containing each particle, we expect the primary 
modes of learned heterogeneity to be on an intermolecular scale instead of an intramolecular 
one (i.e., what types of densities systematically surround each ribosome, rather than what 
densities heterogeneously comprise each ribosome).  
 

Standard tomoDRGN model analysis 

Terminal 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/weights.49.pkl 
05_train_vae_intermol_filtered/ 
 
$ cp 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/z.49.pkl 
05_train_vae_intermol_filtered/ 

 

$ tomodrgn analyze \ 

05_train_vae_intermol_filtered \ 

49 \ 

--Apix 3.7 \ 

--ksample 100 \ 

--flip 

Timing: ~4 minutes 

 
$ cp -R 
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/analyze.49 

05_train_vae_intermol_filtered/analyze.49.published 

 
$ cp 05_train_vae_intermol_filtered/analyze.49/tomoDRGN_viz+filt.ipynb  

05_train_vae_intermol_filtered/analyze.49.published/tomoDRGN_viz+filt.ipynb 

 
As described earlier, due to the randomness of the k-means clustering during tomodrgn analyze, 
we will examine k100 volumes from a precomputed analysis for consistent analysis. 
 

Identify biologically interesting states by k100 visual inspection 

ChimeraX 
open “05_train_vae_intermol_filtered/analyze.49.published/kmeans100/*.mrc” 

volume all level 0.008 

surface dust all size 6 

mseries slider all 
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visually inspect for biologically interesting states 

 my k100 labels for membrane-bound ribosome 

 8, 9, 10 

 my k100 labels for E-site / 5’ disome 

 25, 26, 27, 28, 29, 81, 84, 85, 87, 89, 90, 92 

 my k100 labels for A-site / 3’ disome 

 30, 31, 34, 35, 39, 42, 45 

 my k100 labels for trisome 

 24, 36, 37, 38, 88 

 

 
 

Generate membrane-bound ribosome indices from k100 annotation 

Jupyter notebook 
Open in jupyter 
05_train_vae_intermol_filtered/analyze.49/tomoDRGN_viz+filt.ipynb 

 

When reading in kmeans100, update path to: 
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl') 

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt') 

 

When reading in volumeseries star file, set path to: 
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star' 

 

When selecting particles based on k-means clustering, set clusters to: 
cluster_ids = [8, 9, 10]  
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Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers” 
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are 
carried forward. The important thing is to make sure that the cell in the screenshot above is run 
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids 
variable correctly. 
 
Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive 
selection”, “view tilt images from selected particles”, and “View particle distributions in 
tomogram context” sections (do not have tomograms available) 
 

Update the path naming the indices to save to: 
SAVE_PATH = f'{WORKDIR}/ind_keep.{len(ind_keep)}_particles_memribo.pkl' 

Skip saving non-selected particles 
 
Do not close the notebook yet :) 
 

Terminal: 
$ python 

>>> import numpy as np 
>>> from tomodrgn import utils 
>>> k100_labels = 

utils.load_pkl(‘05_train_vae_intermol_filtered/analyze.49.published/kmeans100/labels.pkl') 

>>> labels_memribo = [8, 9, 10] 
>>> ind_memribo = [ind for ind, label in enumerate(k100_labels) if label in 
labels_memribo] 
>>> ind_memribo = np.array(ind_memribo) 
>>> ind_reindexing = utils.load_pkl(‘03_train_vae/ind_keep.20981_particles.pkl') 
>>> ind_memribo_reindexed = ind_reindexing[ind_memribo] 

>>> utils.save_pkl(ind_memribo, ‘05_train_vae_intermol_filtered/ 
ind_memribo.482_particles.pkl') 
>>> exit()  
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13. Validate membrane-associated ribosomes  
Purpose 
Just as we validated the particles annotated as 50S in tomoDRGN by a homogeneous RELION 
reconstruction, we can perform a similar reconstruction of the particles annotated as 
membrane-associated ribosomes to validate the membrane features.  
 

Filter volume series star file by membrane-associated particle indices  

Terminal 
$ tomodrgn filter_star \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \ 

--ind 05_train_vae_intermol_filtered/ind_keep.482_particles_memribo.pkl \ 

--ptcl-id-col index \ 

-o 

05_train_vae_intermol_filtered/10499_22k_box64_angpix6_volumeseries_428_particles_me

mribo.star 

 

Re-extract memribo particles at intermolecular scale in Warp/M 
While we could directly perform a reconstruction of the 50S ribosomes because we had 
previously extracted all particles as volume series subtomograms with box size 64px and pixel 
size 6Å/px, this real space box size (384Å) is significantly smaller than that used to train our 
intermolecular model (200px * 3.7Å/px = 740 Å). Therefore, we need to re-extract the 
membrane bound ribosome particles as volume series with a larger real space box to properly 
validate this structure.  
 
It turns out that a subset of the membrane-associated particles exhibit a globular density on the 
ribosome-distal side of the membrane. As described in the tomoDRGN methods paper, we 
identify this subset of membrane-associated ribosomes as being in complex with SecDF. This 
SecDF+ subset of particles was re-extracted in Warp as volume series subtomograms with box 
size 192px and pixel size 4Å/px, following the steps described above to extract particles from 
Warp/M. We can use this subset of the membrane-associated ribosomes to backproject and 
validate our membrane-associated ribosome annotations. 
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Validate isolated particles with traditional tools 

Terminal 
$ mkdir -p 05_train_vae_intermol_filtered/validation/backproject_memribo 

 

$ cp /data/EMPIAR-
11843/data/starfiles/10499_22k_box192_angpix4_volumeseries_secdfribos.star  

05_train_vae_intermol_filtered/validation/backproject_memribo/ 

 

$ sed -i 's/..\/subtomo_box192_angpix4_train30_kmeans100_secdfribo_380ptcls/\/data\/EMPIAR-

11843\/data\/subtomo_box192_angpix4_train30_kmeans100_secdfribo_380ptcls/g' 

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix4_vo
lumeseries_secdfribos.star 

 

$ mpirun -n 9 relion_reconstruct_mpi \ 
--i 

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix4_vo
lumeseries_secdfribos.star \ 

--o 

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix
4_volumeseries_secdfribos_reconstruct.mrc \ 

--3d_rot \ 
--ctf \ 

 --maxres 15 
Timing: 1 minute 



 33 

  



 34 

14. Map tomoDRGN-generated intermolecular volumes to tomogram 
spatial context  
Purpose 
While we have thus far examined structural heterogeneity of individual particles in isolation, 
additional analyses and insights can be gained from mapping heterogeneous volumes to their 
locations in the source tomogram (here, inside bacterial cells).  
 
The overall process illustrated here is to (1) isolate the latent embeddings associated with the 
particles from a single tomogram, (2) generate the volumes represented by those embeddings 
with the trained tomoDRGN model, and (3) prepare a ChimeraX command file that repositions 
and reorients each volume according to its tomogram-level coordinates and pose. 
 

Visualizing volumes in tomogram context colored by structural heterogeneity class 

Jupyter notebook 
Return to the 05_train_vae_intermol_filtered Jupyter notebook 
At the bottom of the notebook, add and run the following: 
 

tomo_ids = (df_merged['_rlnGroupName'].str.split('_').str[0] + '_').unique() 

print(f'Unique tomogram identifiers in _rlnGroupName column: {tomo_ids}') 

z_cols = [f'z{i}' for i in range(z.shape[1])] 

for tomo in tomo_ids: 

    SAVE_PATH = f'{WORKDIR}/z.{EPOCH}.{tomo}.pkl' 

    tomo_rows = df_merged['_rlnGroupName'].str.contains(tomo) 

    z_out = df_merged[tomo_rows][z_cols].to_numpy() 

    utils.save_pkl(z_out, SAVE_PATH) 

    print(f'Wrote {os.path.abspath(SAVE_PATH)}') 

     

    SAVE_PATH = f'{WORKDIR}/labels.{tomo}.pkl' 

    labels = np.zeros(len(df_merged[tomo_rows])) 

    labels[df_merged[tomo_rows]['kmeans_labels'].isin([8, 9, 10])] = 1 

    labels[df_merged[tomo_rows]['kmeans_labels'].isin([25, 26, 27, 28, 29, 81, 84, 85, 87, 89, 90, 92])] = 2 

    labels[df_merged[tomo_rows]['kmeans_labels'].isin([30, 31, 34, 35, 39, 42, 45])] = 3 

    labels[df_merged[tomo_rows]['kmeans_labels'].isin([24, 36, 37, 38, 88])] = 4 

    utils.save_pkl(labels, SAVE_PATH) 

    print(f'Wrote {os.path.abspath(SAVE_PATH)}') 
 
This will save the latent embeddings for all particles into separate files by tomogram. It also 
saves a file specifying a class label for each particle, here defined as which k100 classes the 
particle belonged to. 
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Terminal 
$ tomodrgn eval_vol \ 

-w 05_train_vae_intermol_filtered/weights.49.pkl \ 
-c 05_train_vae_intermol_filtered/config.pkl \ 
-o 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols \ 
--zfile 05_train_vae_intermol_filtered/z.49.00256_.pkl \ 
--downsample 64 \ 
--Apix 11.6 

Timing: 1 minute 

This command generates all of the volumes from the specified z.pkl file using the specified 
model weights and volume downsampling settings. 
 
$ tomodrgn subtomo2chimerax \ 

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \ 

--tomoname 00256.tomostar \ 

--vols-dir 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols \ 

--ind 03_train_vae/ind_keep.20981_particles.pkl \ 

--vols-render-level 0.2 \ 

--coloring-labels 05_train_vae_intermol_filtered/labels.00256_.pkl \ 

-o 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols/mapback.cxc \ 

--star-apix-override 6 \ 

--vols-apix-override 11.6 

 

Chimerax 
Open mapback.cxc in ChimeraX and fly around! 
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The subtomo2chimerax command also produces another file: 
05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols/mapback_rgba_labels.txt . This 
plain text file is shown above, and lists each of the classes that we labeled in the Jupyter 
notebook at the beginning of this section: their numerical index, the RGB color associated with 
that index (in %red, %green, %blue, alpha), and the 1-indexed ChimeraX models associated with 
each volume. This is designed such that you can more easily interpret which volumes belong to 
which color-coded class, and that you can select all volumes in a particular class. 
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15. Map tomoDRGN-generated intramolecular volumes to tomogram 
spatial context 
Purpose 
We can map back tomoDRGN volumes from the intramolecular model we trained earlier when 
separating 50S from 70S particles. Generating and mapping these volumes back to tomogram 
locations allows us to explore different spatial distributions of, for example, 50S vs 70S 
ribosomes.  
 

Visualizing volumes in tomogram context colored by structural heterogeneity class 

Jupyter notebook 
Return to the 04_train_vae_filtered Jupyter notebook 
At the bottom of the notebook, add and run the following: 
 

tomo_ids = (df_merged['_rlnGroupName'].str.split('_').str[0] + '_').unique() 

print(f'Unique tomogram identifiers in _rlnGroupName column: {tomo_ids}') 

z_cols = [f'z{i}' for i in range(z.shape[1])] 

for tomo in tomo_ids: 

    SAVE_PATH = f'{WORKDIR}/z.{EPOCH}.{tomo}.pkl' 

    tomo_rows = df_merged['_rlnGroupName'].str.contains(tomo) 

    z_out = df_merged[tomo_rows][z_cols].to_numpy() 

    utils.save_pkl(z_out, SAVE_PATH) 

    print(f'Wrote {os.path.abspath(SAVE_PATH)}') 

     

    SAVE_PATH = f'{WORKDIR}/labels.{tomo}.pkl' 

    labels = np.zeros(len(df_merged[tomo_rows])) 

labels[df_merged[tomo_rows]['kmeans_labels'].isin([2, 3, 4, 5, 7, 9])] = 1 

utils.save_pkl(labels, SAVE_PATH) 

    print(f'Wrote {os.path.abspath(SAVE_PATH)}') 
 

Terminal 
$ tomodrgn eval_vol -w outputs/04_train_vae_filtered/weights.49.pkl \ 

-c outputs/04_train_vae_filtered/config.pkl \ 

-o outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols \ 

--zfile outputs/04_train_vae_filtered/z.49.00256_.pkl \ 
--downsample 64 \ 
--Apix 5.5565 

 
$ tomodrgn subtomo2chimerax \ 

data/starfiles/10499_22k_box64_angpix6_volumeseries.star \ 

--tomoname 00256.tomostar \ 

--vols-dir outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols \ 

--ind outputs/03_train_vae/ind_keep.20981_particles.pkl \ 

--vols-render-level 0.06 \ 

--coloring-labels outputs/04_train_vae_filtered/labels.00256_.pkl \ 

-o outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols/mapback.cxc \ 



 38 

--star-apix-override 6 \ 

--vols-apix-override 5.5565 

 

Chimerax 
Open mapback.cxc in ChimeraX and fly around! Not a lot of 50S ribosomes in this tomogram; try 
with TS_301 
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What might come next? 
• Systematic interrogation of structural heterogeneity across large volume ensembles 

(k100, k500, k1000, k1000, …, all volumes) 
o https://github.com/lkinman/MAVEn 

▪ (Atomic)-model guided analysis of volume density (aka occupancy)  
▪ Is there correlated heterogeneity of structural blocks? Which particle 

subsets exhibit these structural features? 
▪ Literature: https://www.nature.com/articles/s41594-023-01078-5 

o https://github.com/lkinman/SIREn 
▪ Model-free detection of correlated structural elements from a volume 

ensemble 
▪ What types of compositional heterogeneity are present in this volume 

ensemble? Conformational heterogeneity? 
▪ Literature: manuscript in preparation 

o https://phenix-online.org/documentation/reference/varref.html 
▪ Refinement of an atomic model into an ensemble of maps 
▪ What questions can I better answer by parameterizing structural 

heterogeneity with an atomic model ensemble?  
▪ Literature: https://doi.org/10.1016/j.bbamem.2023.184133  

• Refinements of isolated particle sets to confirm observed structural heterogeneity and 
resolve to better resolution 

o Relion 3D auto-refine 
o M multispecies refinement (perhaps each species corresponds to a tomoDRGN-

separated distinct structural state) 

• Your own custom downstream analysis!  
  

https://github.com/lkinman/MAVEn
https://www.nature.com/articles/s41594-023-01078-5
https://github.com/lkinman/SIREn
https://phenix-online.org/documentation/reference/varref.html
https://doi.org/10.1016/j.bbamem.2023.184133
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Frequently asked questions 
• What types of structural heterogeneity can tomoDRGN learn? 

o TomoDRGN’s design provides minimal constraints to the type of structural 
heterogeneity that can be learned. Generally, tomoDRGN will learn any features 
present in the input images: proteins, RNA, membranes, etc. This means 
tomoDRGN can theoretically learn both compositional and conformational 
heterogeneity. 

 

• How many epochs should I train my tomoDRGN model for? What do over/under fitting 
look like? 

o We have generally observed that models are well trained between 25 – 50 
epochs of training, across different types of particles and dataset sizes spanning 
500 – 25000 particles. An undertrained model may produce volumes that look 
low resolution, homogeneous to each other, and potentially with artifacts like 
spikes of density along the orthogonal axes. An overtrained model may produce 
a latent space that initially contained distinct clusters but which have now 
merged, and volumes that appear heavily oversharpened and may have spurious 
density scattered throughout the box. We generally recommend to perform 
model analysis on the first epoch at which the latent space and volume space 
appear to have stabilized (note that this often does not correlate with a plateau 
in the loss curve). 

 

• My particles have been processed in [STOPGAP / RELION v4/v5 / Warp v2 / etc]. How 
can I use them with tomoDRGN? 

o TomoDRGN was initially developed to work with Warp and M (version 1). We are 
actively working to expand the set of directly compatible STA software, but for 
the moment this means particles input to tomoDRGN must be exported from 
Warp or M as “particle series” subtomograms.  

 

• My particle is symmetric, does that change how I should use tomoDRGN? 
o TomoDRGN’s voxel-wise decoder module was not designed with symmetric 

particles or symmetry operators in mind. We would like to implement this, but it 
is not at the top of our current priority list. We recommend performing 
symmetry relaxation to C1 (demonstrated for apoferritin in EMPIAR-10491 and 
for HIV Gag in EMPIAR-10164), or symmetry expansion with signal subtraction to 
the “asymmetric unit” of the symmetric particle. 

 

• What resolution do I need to have by STA for tomoDRGN to be useful? 
o We frequently use tomoDRGN early in good / bad particle filtration at resolutions 

of up to ~10 to ~15 Å. Large compositional heterogeneity can be distinguished 
around these resolutions. Finer compositional or conformational heterogeneity 
usually requires better resolutions. Generally tomoDRGN should be viewed as 
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tool to observe and generate hypotheses relating to structural heterogeneity, to 
then be orthogonally validated and tested. 

 

• How many particles do I need for tomoDRGN to be useful? 
o We have run tomoDRGN and extracted useful results with datasets as small as 

~500 particles (see Figure 6e of https://doi.org/10.1038/s41592-024-02210-z ). 
As mentioned above, these results should serve as hypothesis generating tools 
and should be further validated. 

 

• How large do particles need to be for tomoDRGN to be useful? 
o We have used tomoDRGN on datasets of purified or partially purified complexes 

spanning 500 – 3000 kDa, and on datasets of ribosomes in situ. We would love to 
hear about other use cases of tomoDRGN!  

 

• Does tomoDRGN refine particle poses for each structurally heterogeneous state? 
o No, tomoDRGN does not refine particle poses. It can be thought of as (a very 

powerful per-particle version of) 3-D classification without pose optimization. 
 

• I don’t see any meaningful heterogeneity with tomoDRGN, what should I do? 
o There are a few possible explanations for not seeing heterogeneity as the output 

of tomoDRGN.  
▪ Your model may be undertrained (in which case, train additional epochs) 

or may have too small model capacity (in which case, train a new model 
with a larger encoder, latent, and decoder dimensionality).  

▪ Your input dataset may be too low resolution to distinguish features (in 
which case, try to improve your particle count and resolution by STA).  

▪ Your dataset may have too weak of signal for tomoDRGN to see, perhaps 
due to low molecular weight particles, significant disorder in the particles, 
substantial background signal, etc. These problems likely require 
alternative sample preparation and dataset collection strategies to 
mitigate. 

▪ Your particle may exhibit heterogeneity of too small an amplitude for 
tomoDRGN to detect (e.g. small shifts of individual loops). 

▪ Your dataset may exhibit purely conformational heterogeneity which may 
benefit from the “conservation of mass” regularization enforced by 
heterogeneity analysis tools explicitly designed to resolve conformational 
heterogeneity (TomoFlow, HEMNMA-3D, DeepHEMNMA, MDTOMO, etc).  

▪ Your sample may contain no structural heterogeneity to speak of. 
 

• How does tomoDRGN’s classification of “junk” particles compare to 3D / 2D classification 
tools? 

o Due to the extremely low SNR and absence of ground truth labels in 
experimental datasets, it is extremely difficult to perform absolute performance 
comparisons between different algorithmic approaches. However, in our hands, 

https://doi.org/10.1038/s41592-024-02210-z
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tomoDRGN appears to be very effective at identifying and separating “junk” 
particles. This is likely due to the highly expressive multidimensional latent space 
and per-particle generative model as compared with enforcing all particles to be 
sorted into k distinct classes. 
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Supplemental: voxel_pca_umap.py 
''' 

Runs real space PCA on all volumes provided, runs UMAP on the first `--num-pcs` PCs, saves both results 

to a pkl 

Also plots and saves PCA relative variance, first 5 PCs against each other, and UMAP1 vs UMAP2 

''' 

 

import argparse 

import os 

import glob 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

from sklearn.decomposition import PCA 

import umap 

from tomodrgn import mrc, utils 

 

 

def add_args(parser): 

    parser.add_argument('--vol-dir', type=os.path.abspath, required=True, help='path to directory 

containing volumes to analyze') 

    parser.add_argument('--out-dir', type=os.path.abspath, required=True, help='path to directory to save 

outputs') 

    parser.add_argument('--num-pcs', type=int, default=128, help='keep this many PCs when saving PCA 

and running UMAP') 

    parser.add_argument('--mask-type', choices=['none', 'spherical'], default='spherical', help='binary real-

space mask to apply to each volume') 

    parser.add_argument('--densmap', action='store_true', help='use the DensMAP flag to better preserve 

local density during UMAP reduction') 

 

    return parser 

 

 

def main(args): 

    # SETUP: assert vol-dir exists and is not empty, create outdir 

    print('Validating inputs ...') 

    assert os.path.isdir(args.vol_dir) 

    os.makedirs(args.out_dir, exist_ok=True) 

 

    # PREPROCESSING: create natural-sorted list of volumes to iterate through 

    print('Finding volumes ...') 

    vols_list = glob.glob(os.path.join(args.vol_dir, '*.mrc')) 

    vols_list.sort(key=lambda x: int(os.path.basename(x).split('_')[-1].split('.mrc')[0]))  # assumes naming 

format `vol_001.mrc` 

    box_size = mrc.parse_mrc(vols_list[0])[0].shape[0] 

     

    # PREPROCESSING: prepare mask 
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    print(f'Preparing mask of type {args.mask_type} ...') 

    if args.mask_type == 'spherical': 

        xx = np.linspace(-1, 1, box_size, endpoint=True if box_size % 2 == 1 else False) 

        z, y, x = np.meshgrid(xx, xx, xx) 

        coords = np.stack((x, y, z), -1) 

        r = np.sum(coords ** 2, axis=-1) ** 0.5 

        mask = np.where(r > 1, 0, 1).flatten().astype(bool) 

    elif args.mask_type == 'none': 

        mask = np.ones((box_size, box_size, box_size)).flatten().astype(bool) 

    else: 

        raise RuntimeError 

 

    # PREPROCESSING: load volumes 

    print('Loading and masking volumes ...') 

    vols = np.zeros((len(vols_list), np.sum(mask)), dtype=np.float32) 

    for i, vol in enumerate(vols_list): 

        vol_unmasked = mrc.parse_mrc(vol)[0].flatten() 

        vols[i] = vol_unmasked[mask] 

 

    # PROCESSING: run PCA, keep first num_pcs, save pkl 

    print('Running PCA ...') 

    assert args.num_pcs <= vols.shape[1] 

    pca = PCA(n_components=args.num_pcs, random_state=42, copy=False) 

    pc = pca.fit_transform(vols) 

    utils.save_pkl(pc, os.path.join(args.out_dir, 'voxel_pc.pkl')) 

 

    # PLOTTING: plot and save relative PC variance 

    print('Plotting explained variance ratio ...') 

    x = np.arange(args.num_pcs) 

    y = pca.explained_variance_ratio_ 

    fig, ax = plt.subplots(1, 1) 

    ax.bar(x, y) 

    ax.set_xlabel('principal components') 

    ax.set_ylabel('explained variance ratio') 

    plt.tight_layout() 

    plt.savefig(os.path.join(args.out_dir, 'voxel_pc_explained-variance-ratio.png')) 

    plt.close() 

 

    # PLOTTING: plot and save first 4 PCs against each other 

    print('Plotting first several PCs ...') 

    max_n_pcs_plotted = 4 

    for i in range(max_n_pcs_plotted - 1): 

        for j in range(i + 1, max_n_pcs_plotted): 

            x = pc[:, i] 

            y = pc[:, j] 

            fig, ax = plt.subplots(1, 1) 

            if len(x) < 500: 

                ax.scatter(x, y, s=0.1) 
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            else: 

                sns.jointplot(x=x, y=y, kind='kde', space=0) 

            ax.set_xlabel(f'v-PC{i+1}') 

            ax.set_ylabel(f'v-PC{j+1}') 

            plt.tight_layout() 

            plt.savefig(os.path.join(args.out_dir, f'voxel_pc_pc{i+1}-pc{j+1}.png')) 

            plt.close() 

 

    # PROCESSING: run UMAP, save pkl 

    print(f'Running UMAP on first {args.num_pcs} PCs ...') 

    reducer = umap.UMAP(densmap=args.densmap, random_state=42) 

    embedding = reducer.fit_transform(pc) 

    utils.save_pkl(embedding, os.path.join(args.out_dir, 'voxel_pc_umap.pkl')) 

 

    # PLOTTING: plot and save UMAP1 vs UMAP2 

    print('Plotting UMAP ...') 

    x = embedding[:, 0] 

    y = embedding[:, 1] 

    fig, ax = plt.subplots(1, 1) 

    if len(x) < 500: 

        ax.scatter(x, y, s=0.1) 

    else: 

        sns.jointplot(x=x, y=y, kind='kde', space=0) 

    ax.set_xlabel('v-UMAP1') 

    ax.set_ylabel('v-UMAP2') 

    plt.tight_layout() 

    plt.savefig(os.path.join(args.out_dir, 'voxel_pc_umap1-umap2.png')) 

    plt.close() 

 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description=__doc__, 

formatter_class=argparse.ArgumentDefaultsHelpFormatter) 

    add_args(parser) 

    main(parser.parse_args()) 
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