
 1

UM Cryo-ET Workshop
Wednesday 6/12: TomoDRGN

Overview
TomoDRGN is a deep learning tool for analyzing structural heterogeneity among particles
imaged by cryogenic electron tomography (cryo-ET). TomoDRGN was developed as an extension
from cryoDRGN, which has been widely applied to characterize structural heterogeneity in
cryogenic electron microscopy (cryo-EM) datasets.

The core functionality tomoDRGN is comprised of two parts: (1) training a variational
autoencoder neural network to learn structural heterogeneity among a dataset of particles that
have been previously aligned by sub-tomogram averaging (STA), and (2) analyzing that model to
identify structural heterogeneity trends and groups, quantifiable down to a per-particle level.
The tomoDRGN network can be analyzed in both “latent space” (a low dimensional vector that
summarizes the unique structural state of each particle) and in “volume space” (the real space
3-D volume unique to each particle). Useful insights may be gleaned from manually examining
this structural heterogeneity directly within tomoDRGN, systematically quantifying
heterogeneous states among the ensemble of volumes with tools such as MAVEn and SIREn,
separating structurally distinct classes of particles for subsequent STA refinement, and
correlating structurally heterogeneous states with spatial localization and geometry in the
source tomograms.

This tutorial guides users through use of tomoDRGN in analyzing a widely used benchmark
dataset: ribosomes imaged in sub-lethally chloramphenicol treated Mycoplasma pneumoniae
cells (EMPIAR-10499). The tutorial illustrates the types of analyses performed in tomoDRGN’s
primary methods manuscript1. All inputs and outputs to this tutorial are available from EMPIAR-
10499, EMPIAR-11843, and Zenodo, while the tomoDRGN software itself is available from
GitHub.

References:
1. Powell, B.M., Davis, J.H. Learning structural heterogeneity from cryo-electron sub-tomograms

with tomoDRGN. Nature Methods (2024). https://doi.org/10.1038/s41592-024-02210-z
2. Powell, B.M.; Brant, T.S.; Davis, J.H.; Mosalaganti, S. Rapid structural analysis of bacterial

ribosomes in situ. bioRxiv (2024). https://doi.org/10.1101/2024.03.22.586148

https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1101/2024.03.22.586148

 2

Table of Contents

Overview ... 1

Table of Contents .. 2

1. Initialize the computational environment .. 3

2. Obtain raw data ... 4

3. Validate particle extraction ... 8

4. Train a full tomoDRGN network .. 10

5. Analyze the trained model to identify non-ribosomal particles ... 11

6. Alternative visualizations and particle identification strategies ... 17

7. Train a tomoDRGN network on a particle subset ... 19

8. Identify ribosomal structural heterogeneity ... 20

9. Validate interesting state particles .. 23

10. Iterative identification and refinement of species in RELION / M .. 25

11. Train a tomoDRGN network on a particle subset at intermolecular scale.............................. 27

12. Identify intermolecular structural heterogeneity ... 28

13. Validate membrane-associated ribosomes ... 31

14. Map tomoDRGN-generated intermolecular volumes to tomogram spatial context 34

15. Map tomoDRGN-generated intramolecular volumes to tomogram spatial context 37

What might come next? .. 39

Frequently asked questions .. 40

Supplemental: voxel_pca_umap.py .. 43

 3

1. Initialize the computational environment
This tutorial requires the following software:

• tomoDRGN: https://www.github.com/bpowell122/tomodrgn (v0.2.2)

• RELION: https://github.com/3dem/relion

• ChimeraX: https://www.rbvi.ucsf.edu/chimerax/

You may find it useful to have a few terminals open while proceeding through this tutorial so as
to avoid having to re-load each software at various points.

Terminal-1 (tomoDRGN)
$ mkdir /work/participant/tomodrgn_tutorial/

$ cd /work/participant/tomodrgn_tutorial/

$ source ~/conda_init.sh

$ conda activate tomodrgn

Terminal-2 (tomoDRGN Jupyter notebook)
$ cd /work/participant/tomodrgn_tutorial/

$ source ~/conda_init.sh

$ conda activate tomodrgn

$ jupyter notebook
Note: this may launch a web page that asks for a token that does not exist. If so,
you can create a password first, then re-launch jupyter:
$ jupyter notebook password
Enter any password you choose (e.g. `cryoet`), then enter that password a second time
to confirm.
$ jupyter notebook
Now the Jupyter notebook browser page should ask for a password instead of a token.
Enter the password you just set.

Terminal-3 (RELION)
$ module load relion

$ cd /work/participant/tomodrgn_tutorial/

Terminal-4 (ChimeraX)
$ chimerax

Note that the DCV Viewer application may rebind copy and paste. On my Mac, copy/paste is
rebound to [command]+[shift]+[C/V]

https://www.github.com/bpowell122/tomodrgn
https://github.com/3dem/relion
https://www.rbvi.ucsf.edu/chimerax/

 4

2. Obtain raw data
Several input data types from upstream processing are required to take full advantage of
tomoDRGN’s heterogeneity analysis, validation, and iterative processing potential. However,
only some files are required for minimal functionality.

Strictly required

1. “Image series” / “particle series” subtomograms

• Real-space 2-D projection images of each particle used by tomoDRGN

• Warp and M offer this option via “Subtomogram Extraction > Image series”
2. Star file metadata for “image series” subtomograms

• RELION v3 star file (i.e. no data_optics block due to Warp/M compatibility)

• Each tilt image is referenced by one row. Tilt images of the same particle are
identified by the rlnGroupName column

Strongly recommended
3. “Volume series” subtomograms

• Real-space 3-D subtomograms of each particle used in RELION to validate
structurally distinct particle sets

• Warp and M default to this via “Subtomogram Extraction > Volume series”
4. Star file metadata for “volume series” subtomograms

• RELION v3 star file (i.e. no data_optics block due to Warp/M compatibility)

• Each particle is referenced by one row.

From EMPIAR and Zenodo
Both particle series and volume series subtomograms are pre-extracted and are publicly
available for EMPIAR-10499 as described in the tomoDRGN methods paper:

 5

Pre-trained tomoDRGN models trained on these datasets are publicly available on Zenodo as
described in the tomoDRGN methods paper:

This tutorial will use a subset of the deposited datasets and models:

• https://www.ebi.ac.uk/empiar/EMPIAR-11843/
o 11843/data/particleseries_box96_angpix3.7 (31 GB)
o 11843/data/subtomo_box64_angpix6 (33 GB)
o 11843/data/particleseries_box200_angpix3.7 (136 GB)
o 11843/data/subtomo_box192_angpix4_train30_kmeans100_secdfribos_380ptcls

 (15 GB)
o 11843/data/starfiles (883 MB)

• https://zenodo.org/records/10093310
o files/04_dataset_empiar_10499.zip (17 GB)

https://www.ebi.ac.uk/empiar/EMPIAR-11843/
https://zenodo.org/records/10093310

 6

From particle extraction in Warp or M
Image series and volume series subtomograms can be extracted for your own datasets from Warp
or M as follows:

Warp: In tomostar mode, select “export sub-tomograms”. Select the star file specifying particle
locations to extract. The important parameter to set for tomoDRGN’s inputs is to choose either
“volumes” or “image series”. The first option produces “volume series” subtomograms (3-D
subtomogram volumes and CTF volumes suitable for refinement in RELION v3) or “image series”
subtomograms (2-D projection images of each particle suitable for training tomoDRGN models),
respectively. We recommend extracting both image series and volume series of the same
particles such that you can do both tomoDRGN model training and subsequent particle subset
validations and refinements. All other extraction parameters should be set following the Warp
User’s Guide http://www.warpem.com/warp/?page_id=169.

http://www.warpem.com/warp/?page_id=169

 7

M: Right click on the particle count of the species to export, and select “export particles”.
Choose either “volumes” or “image series” for particle export as “volume series” or “image
series”, respectively. Other parameters should be set following the Warp Users’s Guide
http://www.warpem.com/warp/?page_id=169.

http://www.warpem.com/warp/?page_id=169

 8

3. Validate particle extraction
Purpose
Once you have extracted (or downloaded a pre-extracted) subtomogram particleseries, it’s a
good idea to validate that the extraction worked correctly. Specifically, we’re checking that the
particle coordinates and poses used for extraction align with those used previously for STA. A
quick way to confirm successful particle extraction is to generate a homogeneous
reconstruction of the extracted particles, either via tomodrgn backproject_voxel or tomodrgn

train_nn.

Performing a homogeneous reconstruction via backproject_voxel
TomoDRGN’s backproject_voxel uses the specified particles to output an unfiltered consensus
volume.

Terminal
$ mkdir 01_backproject

$ tomodrgn backproject_voxel \
/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star \
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7 \
--first 5000 \
-o 01_backproject/backproject_first5000.mrc

Timing: 1 minute

$ relion_image_handler --i 01_backproject/backproject_first5000.mrc \
 --o 01_backproject/backproject_first5000_lowpass30.mrc \
 --lowpass 30

Chimerax:
Open backproject_first5000_lowpass30.mrc

The unfiltered backprojection of the first 5000 particle images is very noisy. After applying a
strong lowpass filter, we clearly see ribosomal features. We can also notice that the data has the

 9

correct dark/light convention (which we could (un)invert with --uninvert-data). TomoDRGN’s
backproject could be made less noisy by using more images (increasing the value passed to
--first) or targeted to specific particles with --ind.

Performing a homogeneous reconstruction via train_nn
TomoDRGN’s train_nn trains a decoder-only neural network using the specified particles to
output a homogeneous consensus volume (i.e., no latent space or structural heterogeneity is
learned). This is generally a legacy tool, and we recommend validating particle extraction with
backproject_voxel instead. However, this command will introduce you to some of the
arguments and outputs that will be produced for the full heterogeneous tomodrgn model
training.

Terminal
$ tomodrgn train_nn \

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star \
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \
--outdir 02_train_nn \
--dim 512 \
--layers 3 \
-n 50 \
--l-dose-mask

Timing: 10 mins to load, 10 mins per epoch, can kill partway through via [control]+[c]

 10

4. Train a full tomoDRGN network
Purpose
Learning structural heterogeneity from a dataset is the core functionality of tomoDRGN. This
requires training a neural network from scratch for each dataset to learn the structural
heterogeneity features unique to a particular set of particles’ images. Additional / iterative
rounds of model training on progressively-smaller particle subsets are possible for deeper
analyses.

Terminal
$ tomodrgn train_vae \

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star \
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \

--outdir 03_train_vae \

--enc-dim-A 256 \

--enc-layers-A 3 \

--out-dim-A 128 \

--enc-dim-B 256 \

--enc-layers-B 3 \

--zdim 128 \

--dec-dim 256 \

--dec-layers 3 \

-n 50 \

--l-dose-mask \

--recon-dose-weight \

--recon-tilt-weight

Timing: 5 mins to load, 10 mins per epoch, kill partway through

 11

5. Analyze the trained model to identify non-ribosomal particles
Purpose
The input dataset very likely contains non-ribosomal particles (e.g. other macromolecules,
membranes, ice, metallic sputter, random noise). TomoDRGN’s expressive model can aid in
robustly detecting and removing these particles which otherwise consume the model’s
representation capacity of true ribosomal structural heterogeneity. We can separate “good”
from “non-ribosomal” particles by a variety of methods in latent or real space. We describe and
illustrate several of these methods here, as some may work better or worse on your particular
dataset.

Standard tomoDRGN model analysis
We first copy the model weights and resulting particle latent embeddings from the 49th epoch
of training that were precalculated for you.

Terminal:
$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian/weights.49.pkl 03_train_vae/

$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian/z.49.pkl 03_train_vae/

$ tomodrgn analyze \

03_train_vae \

49 \

--Apix 3.7 \

--flip \

--ksample 100

Timing: 1 minute

The tomodrgn analyze command evaluates a particular model (here, 03_train_vae) at a particular
epoch of training (here, epoch 49). The latent embeddings of all particles are subjected to
principal component analysis (z_pca.png) and UMAP (umap.png, umap.pkl) dimensionality
reduction. Volumes are generated from latent embeddings that sample deciles along each of
the first two latent space principal component axes (pc1/, pc2/). The latent space is more

 12

broadly sampled by k-means clustering, and the centroid latent embedding of each k-means
class is used to generate “k100 centroid volumes”.

The k100 centroid volumes are useful to visually inspect the types of structural heterogeneity
learned from the dataset. Increasing the number of k-means clusters will give more granular
insights to per-particle structural heterogeneity at the trade-off of requiring more manual
inspection to characterize. Due to the random initialization of the k-means sampling, we will use
pre-generated k-means classes from Zenodo to be consistent in further analysis.

$ cp -R

/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/27_vae_box96_256x3_128_256x3_

128_256x3_b1_gaussian/analyze.49 03_train_vae/analyze.49.published

$ cp 03_train_vae/analyze.49/tomoDRGN_viz+filt.ipynb

03_train_vae/analyze.49.published/tomoDRGN_viz+filt.ipynb

Identify non-ribosomal particles by visual inspection of k100 volumes

ChimeraX
open “03_train_vae/analyze.49.published/kmeans100/*.mrc”

volume all level 0.018

surface dust all size 6

mseries slider all

visually inspect for 70S / 50S / non-ribosomal

 my k100 labels for non-ribosomal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92, 93
my k100 labels for 50S:
94, 95, 96, 97, 98, 99

 13

Flip through the mseries to see all 100 volumes. Note large and systematic changes of density.
At this stage we’re aiming to annotate “ribosomal” (which could be 50S or 70S) separate from
“non-ribosomal”. These junk particles are generally noisy, have less defined structure than good
particles, and can have very large or small density at a reasonable isosurface for the good
particles.

Keep in mind that tomoDRGN indexes volumes in a 0-based system, but the mseries is 1-
indexed!

Sometimes it can be easier to see large scale systematic differences by tiling all volumes instead
of flipping through an mseries.
show all

tile all columns 10

Generate indices of good particles based on k100 annotation
Good particle indices can be generated with the standard analysis Jupyter notebook (which
offers more features, visualizations, and alternative filtering options), or directly at the
command line via a few python commands (which can be more convenient for quick
annotation).

Jupyter notebook
Open in jupyter 03_train_vae/analyze.49/tomoDRGN_viz+filt.ipynb

 14

See this page for a useful reference of Jupyter notebook tools:
https://www.edureka.co/blog/wp-
content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf

When reading in kmeans100, update path to:
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl')

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt')

When reading in volumeseries star file, set path to:
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star'

When selecting particles based on k-means clustering, set clusters to:
cluster_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92, 93]

https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf

 15

Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers”
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are
carried forward. The important thing is to make sure that the cell in the screenshot above is run
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids
variable correctly.

Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive
selection”, “view tilt images from selected particles”, and “View particle distributions in
tomogram context” sections (do not have tomograms available)

Note that there is a bug with interactive selection in some versions of jupyter notebook and
associated widgets that causes the notebook to stop producing output after the interactive
plotting + selection cell has been run. To recover from this, restart the notebook (and return to
the beginning of the Jupyter notebook section of this tutorial).

In “Save selection indices” section, update selection/not:
ind_keep = ind_selected_not

ind_bad = ind_selected

Finish with saving ind_keep and ind_bad pkl files.

Don’t close notebook yet!

Terminal:
$ python
>>> import numpy as np
>>> from tomodrgn import utils
>>> k100_labels =
utils.load_pkl(‘03_train_vae/analyze.49.published/kmeans100/labels.pkl')
>>> labels_nr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 92,
93]
>>> ind_nr = [ind for ind, label in enumerate(k100_labels) if label in labels_nr]

 16

>>> ind_nr = np.array(ind_nr)
>>> utils.save_pkl(ind_nr, ‘03_train_vae/ind_nr.1310_particles.pkl')
>>> ind_ribo = [ind for ind, label in enumerate(k100_labels) if label not in
labels_nr]
>>> ind_ribo = np.array(ind_ribo)
>>> utils.save_pkl(ind_ribo, ‘03_train_vae/ind_ribo.20981_particles.pkl')
>>> exit()

 17

6. Alternative visualizations and particle identification strategies
Purpose
While particles of distinct structural states can often be well separated by the latent space k100
sampling described above, alternative approaches are possible and may work better for other
datasets. These include latent space gaussian mixture model (GMM) clustering, latent space
outlier identification, and volume space voxel PCA and UMAP.

Latent space analysis
The latent space can be analyzed and grouped by any number of clustering approaches. The
Jupyter notebook includes support for latent space GMM clustering, and other clustering
approaches can be used. The magnitude of each particle’s latent encoding can also be
correlated with “junk” particle identity, whereby junk particles can have latent embeddings on
the periphery of the main distribution centered near zero.

Jupyter notebook
Try different clustering settings and random seeds in the “GMM clustering” section.
Try different zscore latent magnitude cutoffs in the “Filter by latent outliers” section.

Volume space analysis
While the latent space learned by tomoDRGN is a low dimensional representation of the
structural heterogeneity captured by each dataset, sometimes directly analyzing the ensemble
of tomoDRGN-generated heterogeneous volumes can give more direct and informative insights.
Here we analyze a volume ensemble of all 22,291 unique particles (at box size 32px) by PCA (to
the first 128 components) followed by UMAP dimensionality reduction. A volume ensemble
generated in this way can also be used as inputs to MAVEn or SIREn.

Terminal
$ mkdir 03_train_vae/analyze.49.published/all_vols_box32

$ tomodrgn eval_vol -w 03_train_vae/weights.49.pkl \

-c 03_train_vae/config.pkl \

-o 03_train_vae/analyze.49.published/all_vols_box32 \

--zfile 03_train_vae/z.49.pkl \

--downsample 32 \

--Apix 11.1 \

--flip \

-b 64

Timing: ~3 minutes

$ python /sw/tomodrgn/0.2.2/utils/voxel_pca_umap.py \

--vol-dir 03_train_vae/analyze.49.published/all_vols_box32 \

--out-dir 03_train_vae/analyze.49.published/all_vols_box32_analysis \

--num-pcs 128

Timing: ~5 mins

 18

The per-particle volume space voxel-pca-umap embeddings can also be loaded into the Jupyter
notebook for interactive analysis or to use as the basis for clustering (rather than the latent
space embeddings).

Create a new cell in the Jupyter notebook at the better of the “Interactive visualization” section.
Insert and run the following code:
voxel_pca_umap =

utils.load_pkl(‘03_train_vae/analyze.49.published/all_vols_box32_analysis/voxel_pc_umap.pkl’)

df_merged[‘voxel_pca_umap1’] = voxel_pca_umap[:,0]

df_merged[‘voxel_pca_umap2’] = voxel_pca_umap[:,1]

You could at this point create many types of plots, clustering, etc by cross referencing the many
metadata details available for each particle in the df_merged dataframe.

Now can close notebook :)

 19

7. Train a tomoDRGN network on a particle subset
Purpose
Now that the non-ribosomal particles have been identified, we can train a new tomoDRGN
model on a more purely-ribosomal particle stack to more fully leverage the learning capacity of
the network.

Terminal
$ tomodrgn train_vae \

/data/EMPIAR-11843/data/starfiles/10499_22k_box96_angpix3.7.star \
--datadir /data/EMPIAR-11843/data/particleseries_box96_angpix3.7/ \

--ind 03_train_vae/ind_keep.20981_particles.pkl \

--outdir 04_train_vae_filtered \

--enc-dim-A 256 \

--enc-layers-A 3 \

--out-dim-A 128 \

--enc-dim-B 256 \

--enc-layers-B 3 \

--zdim 128 \

--dec-dim 256 \

--dec-layers 3 \

-n 50 \

--l-dose-mask \

--recon-dose-weight \

--recon-tilt-weight

Timing: 5 mins to load, 10 mins per epoch, kill partway through

 20

8. Identify ribosomal structural heterogeneity
Purpose
Equipped with a tomoDRGN model trained on a purely-ribosomal dataset, we can now analyze
that model for structural heterogeneity. This analysis will use many of the same commands and
tools introduced earlier in the non-ribosomal particle filtration section

Standard tomoDRGN model analysis

Terminal:
$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/weights.49.pkl 04_train_vae_filtered/

$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/z.49.pkl 04_train_vae_filtered/

$ tomodrgn analyze \

04_train_vae_filtered \

49 \

--Apix 3.7 \

--flip \

--ksample 100

Timing: 1 minute

As described earlier for the non-ribosomal particle analysis, due to the randomness of the k-
means clustering during tomodrgn analyze, we will examine k100 volumes from a precomputed
analysis for consistent analysis.

$ cp -R
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/28_vae_box96_256x3
_128_256x3_128_256x3_b1_gaussian_ind20981/analyze.49
04_train_vae_filtered/analyze.49.published

$ cp 04_train_vae_filtered/analyze.49/tomoDRGN_viz+filt.ipynb
04_train_vae_filtered/analyze.49.published/tomoDRGN_viz+filt.ipynb

Identify biologically interesting states by visual inspection of k100 volumes
At this stage of analysis, we expect to see extensive ribosomal structural heterogeneity. This will
principally involve heterogeneity related to translational states (A- and P- site tRNAs, EF-Tu
bound T-site tRNA)

ChimeraX
open “04_train_vae_filtered/analyze.49.published/kmeans100/*.mrc”

volume all level 0.013

surface dust all size 6

mseries slider all

visually inspect for biologically interesting states

 21

 50S: vol_005.mrc vs vol_021.mrc

SSU rotation with H17 motion: vol_021.mrc vs vol_023.mrc

P-only: vol_031.mrc or vol_093.mrc

EFTu-P: vol_023.mrc

AP: vol_012.mrc

peripheral density: vol_088.mrc

visually inspect for 50S or EF-Tu k100 classes:

 my k100 labels for 50S

 2, 3, 4, 5, 7, 9

 My k100 labels for EF-Tu

 22, 23, 24, 25, 26, 27, 28, 29, 33, 61, 62, 75, 88

It can be very useful to have an atomic model to guide interpretation of heterogeneous volumes
(where do you observe extra density unaccounted for by the model, where is the model fitting
the density well, etc.). This dataset was originally used to solve PDBs: 7ph9, 7pha, 7phb, 7phc.
You can easily open atomic models in ChimeraX with:

open 7phb from pdb

Generate 50S particle indices from k100 annotation
As above when identifying good vs non-ribosomal particle indices, we illustrate both a more
flexible and comprehensive Jupyter notebook based method for generating indices, and a quick
interactive python session method as well.

 22

Jupyter notebook
Open in jupyter
04_train_vae_filtered/analyze.49/tomoDRGN_viz+filt.ipynb

When reading in kmeans100, update path to:
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl')

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt')

When reading in volumeseries star file, set path to:
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star'

When selecting particles based on k-means clustering, set clusters to:
cluster_ids = [2, 3, 4, 5, 7, 9]

Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers”
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are
carried forward. The important thing is to make sure that the cell in the screenshot above is run
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids
variable correctly.

Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive
selection”, “view tilt images from selected particles”, and “View particle distributions in
tomogram context” sections (do not have tomograms available)

Update the path naming the indices to save:
SAVE_PATH = f'{WORKDIR}/ind_keep.{len(ind_keep)}_particles_50S.pkl'

Terminal:
$ python

>>> import numpy as np
>>> from tomodrgn import utils
>>> k100_labels =
utils.load_pkl(‘04_train_vae_filtered/analyze.49.published/kmeans100/labels.pkl')

>>> labels_50S = [2, 3, 4, 5, 7, 9]
>>> ind_50S = [ind for ind, label in enumerate(k100_labels) if label in labels_50S]
>>> ind_50S = np.array(ind_50S)
>>> ind_reindexing = utils.load_pkl(‘03_train_vae/ind_keep.20981_particles.pkl')
>>> ind_50S_reindexed = ind_reindexing[ind_50S]
>>> utils.save_pkl(ind_50S, ‘04_train_vae_filtered/ind_50S.615_particles.pkl')
>>> exit()

 23

9. Validate interesting state particles
Purpose
While we have yet to observe a “structural hallucination” produced by tomoDRGN across
several datasets, it is a reassuring good practice to validate observed structural heterogeneity of
a subset of particles by performing a more traditional reconstruction of that particle subset to
reproduce that particular structural state. Here we illustrate this process for the 50S ribosomal
subunit population of the dataset.

Filter volume series star file by 50S particle indices
As the volume series star file can be used for downstream analysis in RELION, it is convenient to
filter it to the particles of the structural state in question (here, 50S ribosomes).

Terminal
$ tomodrgn filter_star \

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \

--ind 04_train_vae_filtered/ind_keep.615_particles_50S.pkl \

--ptcl-id-col index \

-o 04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star

Validate structural state of isolated particles
We next perform a homogeneous reconstruction of the specified 50S particles using RELION to
validate their 50S structural state.

Terminal
$ mkdir -p 04_train_vae_filtered/validation/backproject_50S

$ sed -i 's/..\/subtomo_box64_angpix6/\/data\/EMPIAR-11843\/data\/subtomo_box64_angpix6/g'

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star

$ mpirun -n 9 relion_reconstruct_mpi \
--i

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star \
--o

04_train_vae_filtered/validation/backproject_50S/10499_22k_box64_angpix6_volumeseries_615_
particles_50S_reconstruct.mrc \

--3d_rot \
--ctf \
--maxres 15

Timing: 1 minute

 24

 25

10. Iterative identification and refinement of species in RELION / M
Purpose
Once a set of particles bearing distinct structural features have been identified (using
tomoDRGN) and validated (using RELION or other traditional reconstruction approaches), one
may want to improve particle STA parameters following this new structural reference model.
This is typically done in RELION and/or M.

Isolate 50S particles
We already did this above when we filtered the volume series star file to just 50S particles!

Run RELION 3D auto refine
Because the 50S ribosome is so substantially different than the 70S against which it was refined
by STA, it is worthwhile to re-refine the 50S particles against a 50S reference volume to produce
optimal particle poses.

Terminal
$ mkdir 04_train_vae_filtered/validation/refine3d_50S

$ mpirun -n 9 --bind-to none relion_refine_mpi \
--i

04_train_vae_filtered/10499_22k_box64_angpix6_volumeseries_615_particles_50S.star \

--o 04_train_vae_filtered/validation/refine3d_50S/run

--ref

04_train_vae_filtered/validation/backproject_50S/10499_22k_box64_angpix6_volumeseries_615_
particles_50S_reconstruct.mrc \

--auto_refine \

--split_random_halves \

--firstiter_cc \

--ini_high 60 \

--dont_combine_weights_via_disc \

--preread_images \

--pool 3 \

--pad 2 \

--skip_gridding \

--ctf \

--particle_diameter 300 \

--flatten_solvent \

--zero_mask \

--oversampling 1 \

--healpix_order 2 \

--auto_local_healpix_order 4 \

--offset_range 5 \

--offset_step 2 \

--sym C1 \

--low_resol_join_halves 40 \

--norm \

--scale \

 26

--j 4 \

--gpu "" \

--preread_images

Timing: ~20 minutes (18A unmasked FSC final)

We could also import into M and refine as a distinct species (preferably alongside the 70S
particles to constrain the refinement).

 27

11. Train a tomoDRGN network on a particle subset at intermolecular
scale
Purpose
The ribosomal heterogeneity model analyzed earlier by k100 volume inspection contained
several volumes bearing features that appeared truncated by the limits of the reconstructed
box. As these ribosomal particles were imaged in situ in a cell, such particle-adjacent density
could plausibly derive from systematic intermolecular structural heterogeneity of the immediate
structural neighborhood of each ribosome. To better characterize this intermolecular
heterogeneity, we can re-extract our particles at a larger real space box size and train a new
tomoDRGN model to learn and analyze intermolecular heterogeneity.

All 22,291 particles were pre-extracted at box size 200px and pixel size 3.7Å/px and are available
from EMPIAR-11843. This means we need to apply the same particle filtering indices that we
derived in the 03_train_vae analysis.

Terminal
$ tomodrgn train_vae \

/data/EMPIAR-11843/data/starfiles/10499_22k_box200_angpix3.7.star \

--datadir /data/EMPIAR-11843/data/particleseries_box200_angpix3.7 \

--ind 03_train_vae/ind_keep.20981_particles.pkl \

--outdir 05_train_vae_intermol_filtered \

--enc-dim-A 256 \

--enc-layers-A 3 \

--out-dim-A 128 \

--enc-dim-B 256 \

--enc-layers-B 3 \

--zdim 128 \

--dec-dim 256 \

--dec-layers 3 \

-n 50 \

--l-dose-mask \

--recon-dose-weight \

--recon-tilt-weight \

--lazy

Timing: ~5 mins to load, ~100 mins per epoch (due to lazy, due to 129 GiB RAM requirement), kill partway

through

 28

12. Identify intermolecular structural heterogeneity
Purpose
As is hopefully becoming familiar, once we have a trained tomoDRGN model, we will inspect a
survey of its volumes to see what sorts of heterogeneity have been learned. Here, because we
trained the model on a larger real space box containing each particle, we expect the primary
modes of learned heterogeneity to be on an intermolecular scale instead of an intramolecular
one (i.e., what types of densities systematically surround each ribosome, rather than what
densities heterogeneously comprise each ribosome).

Standard tomoDRGN model analysis

Terminal
$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/weights.49.pkl
05_train_vae_intermol_filtered/

$ cp
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/z.49.pkl
05_train_vae_intermol_filtered/

$ tomodrgn analyze \

05_train_vae_intermol_filtered \

49 \

--Apix 3.7 \

--ksample 100 \

--flip

Timing: ~4 minutes

$ cp -R
/data/04_dataset_empiar_10499/01_tomodrgn/01_training_and_analysis/30_vae_box200_256x
3_128_256x3_128_256x3_b1_gaussian_ind20981_inter/analyze.49

05_train_vae_intermol_filtered/analyze.49.published

$ cp 05_train_vae_intermol_filtered/analyze.49/tomoDRGN_viz+filt.ipynb

05_train_vae_intermol_filtered/analyze.49.published/tomoDRGN_viz+filt.ipynb

As described earlier, due to the randomness of the k-means clustering during tomodrgn analyze,
we will examine k100 volumes from a precomputed analysis for consistent analysis.

Identify biologically interesting states by k100 visual inspection

ChimeraX
open “05_train_vae_intermol_filtered/analyze.49.published/kmeans100/*.mrc”

volume all level 0.008

surface dust all size 6

mseries slider all

 29

visually inspect for biologically interesting states

 my k100 labels for membrane-bound ribosome

 8, 9, 10

 my k100 labels for E-site / 5’ disome

 25, 26, 27, 28, 29, 81, 84, 85, 87, 89, 90, 92

 my k100 labels for A-site / 3’ disome

 30, 31, 34, 35, 39, 42, 45

 my k100 labels for trisome

 24, 36, 37, 38, 88

Generate membrane-bound ribosome indices from k100 annotation

Jupyter notebook
Open in jupyter
05_train_vae_intermol_filtered/analyze.49/tomoDRGN_viz+filt.ipynb

When reading in kmeans100, update path to:
kmeans_labels = utils.load_pkl(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/labels.pkl')

kmeans_centers = np.loadtxt(f'{WORKDIR}/analyze.{EPOCH}.published/kmeans{K}/centers.txt')

When reading in volumeseries star file, set path to:
path_to_volseries_star = '/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star'

When selecting particles based on k-means clustering, set clusters to:
cluster_ids = [8, 9, 10]

 30

Run the “select particles based on GMM cluster” and “select particles based on z-norm outliers”
sections to try other ways to classify particles based on latent embeddings. When finished, re-
run the “select particles based on k-means clustering” section to make sure those selections are
carried forward. The important thing is to make sure that the cell in the screenshot above is run
last before proceeding to “interactive visualization” section below, as this sets the cluster_ids
variable correctly.

Run the “interactive visualization” first few cells to produce df_merged, then skip “interactive
selection”, “view tilt images from selected particles”, and “View particle distributions in
tomogram context” sections (do not have tomograms available)

Update the path naming the indices to save to:
SAVE_PATH = f'{WORKDIR}/ind_keep.{len(ind_keep)}_particles_memribo.pkl'

Skip saving non-selected particles

Do not close the notebook yet :)

Terminal:
$ python

>>> import numpy as np
>>> from tomodrgn import utils
>>> k100_labels =

utils.load_pkl(‘05_train_vae_intermol_filtered/analyze.49.published/kmeans100/labels.pkl')

>>> labels_memribo = [8, 9, 10]
>>> ind_memribo = [ind for ind, label in enumerate(k100_labels) if label in
labels_memribo]
>>> ind_memribo = np.array(ind_memribo)
>>> ind_reindexing = utils.load_pkl(‘03_train_vae/ind_keep.20981_particles.pkl')
>>> ind_memribo_reindexed = ind_reindexing[ind_memribo]

>>> utils.save_pkl(ind_memribo, ‘05_train_vae_intermol_filtered/
ind_memribo.482_particles.pkl')
>>> exit()

 31

13. Validate membrane-associated ribosomes
Purpose
Just as we validated the particles annotated as 50S in tomoDRGN by a homogeneous RELION
reconstruction, we can perform a similar reconstruction of the particles annotated as
membrane-associated ribosomes to validate the membrane features.

Filter volume series star file by membrane-associated particle indices

Terminal
$ tomodrgn filter_star \

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \

--ind 05_train_vae_intermol_filtered/ind_keep.482_particles_memribo.pkl \

--ptcl-id-col index \

-o

05_train_vae_intermol_filtered/10499_22k_box64_angpix6_volumeseries_428_particles_me

mribo.star

Re-extract memribo particles at intermolecular scale in Warp/M
While we could directly perform a reconstruction of the 50S ribosomes because we had
previously extracted all particles as volume series subtomograms with box size 64px and pixel
size 6Å/px, this real space box size (384Å) is significantly smaller than that used to train our
intermolecular model (200px * 3.7Å/px = 740 Å). Therefore, we need to re-extract the
membrane bound ribosome particles as volume series with a larger real space box to properly
validate this structure.

It turns out that a subset of the membrane-associated particles exhibit a globular density on the
ribosome-distal side of the membrane. As described in the tomoDRGN methods paper, we
identify this subset of membrane-associated ribosomes as being in complex with SecDF. This
SecDF+ subset of particles was re-extracted in Warp as volume series subtomograms with box
size 192px and pixel size 4Å/px, following the steps described above to extract particles from
Warp/M. We can use this subset of the membrane-associated ribosomes to backproject and
validate our membrane-associated ribosome annotations.

 32

Validate isolated particles with traditional tools

Terminal
$ mkdir -p 05_train_vae_intermol_filtered/validation/backproject_memribo

$ cp /data/EMPIAR-
11843/data/starfiles/10499_22k_box192_angpix4_volumeseries_secdfribos.star

05_train_vae_intermol_filtered/validation/backproject_memribo/

$ sed -i 's/..\/subtomo_box192_angpix4_train30_kmeans100_secdfribo_380ptcls/\/data\/EMPIAR-

11843\/data\/subtomo_box192_angpix4_train30_kmeans100_secdfribo_380ptcls/g'

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix4_vo
lumeseries_secdfribos.star

$ mpirun -n 9 relion_reconstruct_mpi \
--i

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix4_vo
lumeseries_secdfribos.star \

--o

05_train_vae_intermol_filtered/validation/backproject_memribo/10499_22k_box192_angpix
4_volumeseries_secdfribos_reconstruct.mrc \

--3d_rot \
--ctf \

 --maxres 15
Timing: 1 minute

 33

 34

14. Map tomoDRGN-generated intermolecular volumes to tomogram
spatial context
Purpose
While we have thus far examined structural heterogeneity of individual particles in isolation,
additional analyses and insights can be gained from mapping heterogeneous volumes to their
locations in the source tomogram (here, inside bacterial cells).

The overall process illustrated here is to (1) isolate the latent embeddings associated with the
particles from a single tomogram, (2) generate the volumes represented by those embeddings
with the trained tomoDRGN model, and (3) prepare a ChimeraX command file that repositions
and reorients each volume according to its tomogram-level coordinates and pose.

Visualizing volumes in tomogram context colored by structural heterogeneity class

Jupyter notebook
Return to the 05_train_vae_intermol_filtered Jupyter notebook
At the bottom of the notebook, add and run the following:

tomo_ids = (df_merged['_rlnGroupName'].str.split('_').str[0] + '_').unique()

print(f'Unique tomogram identifiers in _rlnGroupName column: {tomo_ids}')

z_cols = [f'z{i}' for i in range(z.shape[1])]

for tomo in tomo_ids:

 SAVE_PATH = f'{WORKDIR}/z.{EPOCH}.{tomo}.pkl'

 tomo_rows = df_merged['_rlnGroupName'].str.contains(tomo)

 z_out = df_merged[tomo_rows][z_cols].to_numpy()

 utils.save_pkl(z_out, SAVE_PATH)

 print(f'Wrote {os.path.abspath(SAVE_PATH)}')

 SAVE_PATH = f'{WORKDIR}/labels.{tomo}.pkl'

 labels = np.zeros(len(df_merged[tomo_rows]))

 labels[df_merged[tomo_rows]['kmeans_labels'].isin([8, 9, 10])] = 1

 labels[df_merged[tomo_rows]['kmeans_labels'].isin([25, 26, 27, 28, 29, 81, 84, 85, 87, 89, 90, 92])] = 2

 labels[df_merged[tomo_rows]['kmeans_labels'].isin([30, 31, 34, 35, 39, 42, 45])] = 3

 labels[df_merged[tomo_rows]['kmeans_labels'].isin([24, 36, 37, 38, 88])] = 4

 utils.save_pkl(labels, SAVE_PATH)

 print(f'Wrote {os.path.abspath(SAVE_PATH)}')

This will save the latent embeddings for all particles into separate files by tomogram. It also
saves a file specifying a class label for each particle, here defined as which k100 classes the
particle belonged to.

 35

Terminal
$ tomodrgn eval_vol \

-w 05_train_vae_intermol_filtered/weights.49.pkl \
-c 05_train_vae_intermol_filtered/config.pkl \
-o 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols \
--zfile 05_train_vae_intermol_filtered/z.49.00256_.pkl \
--downsample 64 \
--Apix 11.6

Timing: 1 minute

This command generates all of the volumes from the specified z.pkl file using the specified
model weights and volume downsampling settings.

$ tomodrgn subtomo2chimerax \

/data/EMPIAR-11843/data/starfiles/10499_22k_box64_angpix6_volumeseries.star \

--tomoname 00256.tomostar \

--vols-dir 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols \

--ind 03_train_vae/ind_keep.20981_particles.pkl \

--vols-render-level 0.2 \

--coloring-labels 05_train_vae_intermol_filtered/labels.00256_.pkl \

-o 05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols/mapback.cxc \

--star-apix-override 6 \

--vols-apix-override 11.6

Chimerax
Open mapback.cxc in ChimeraX and fly around!

 36

The subtomo2chimerax command also produces another file:
05_train_vae_intermol_filtered/analyze.49.published/tomo00256_vols/mapback_rgba_labels.txt . This
plain text file is shown above, and lists each of the classes that we labeled in the Jupyter
notebook at the beginning of this section: their numerical index, the RGB color associated with
that index (in %red, %green, %blue, alpha), and the 1-indexed ChimeraX models associated with
each volume. This is designed such that you can more easily interpret which volumes belong to
which color-coded class, and that you can select all volumes in a particular class.

 37

15. Map tomoDRGN-generated intramolecular volumes to tomogram
spatial context
Purpose
We can map back tomoDRGN volumes from the intramolecular model we trained earlier when
separating 50S from 70S particles. Generating and mapping these volumes back to tomogram
locations allows us to explore different spatial distributions of, for example, 50S vs 70S
ribosomes.

Visualizing volumes in tomogram context colored by structural heterogeneity class

Jupyter notebook
Return to the 04_train_vae_filtered Jupyter notebook
At the bottom of the notebook, add and run the following:

tomo_ids = (df_merged['_rlnGroupName'].str.split('_').str[0] + '_').unique()

print(f'Unique tomogram identifiers in _rlnGroupName column: {tomo_ids}')

z_cols = [f'z{i}' for i in range(z.shape[1])]

for tomo in tomo_ids:

 SAVE_PATH = f'{WORKDIR}/z.{EPOCH}.{tomo}.pkl'

 tomo_rows = df_merged['_rlnGroupName'].str.contains(tomo)

 z_out = df_merged[tomo_rows][z_cols].to_numpy()

 utils.save_pkl(z_out, SAVE_PATH)

 print(f'Wrote {os.path.abspath(SAVE_PATH)}')

 SAVE_PATH = f'{WORKDIR}/labels.{tomo}.pkl'

 labels = np.zeros(len(df_merged[tomo_rows]))

labels[df_merged[tomo_rows]['kmeans_labels'].isin([2, 3, 4, 5, 7, 9])] = 1

utils.save_pkl(labels, SAVE_PATH)

 print(f'Wrote {os.path.abspath(SAVE_PATH)}')

Terminal
$ tomodrgn eval_vol -w outputs/04_train_vae_filtered/weights.49.pkl \

-c outputs/04_train_vae_filtered/config.pkl \

-o outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols \

--zfile outputs/04_train_vae_filtered/z.49.00256_.pkl \
--downsample 64 \
--Apix 5.5565

$ tomodrgn subtomo2chimerax \

data/starfiles/10499_22k_box64_angpix6_volumeseries.star \

--tomoname 00256.tomostar \

--vols-dir outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols \

--ind outputs/03_train_vae/ind_keep.20981_particles.pkl \

--vols-render-level 0.06 \

--coloring-labels outputs/04_train_vae_filtered/labels.00256_.pkl \

-o outputs/04_train_vae_filtered/analyze.49.published/tomo00256_vols/mapback.cxc \

 38

--star-apix-override 6 \

--vols-apix-override 5.5565

Chimerax
Open mapback.cxc in ChimeraX and fly around! Not a lot of 50S ribosomes in this tomogram; try
with TS_301

 39

What might come next?
• Systematic interrogation of structural heterogeneity across large volume ensembles

(k100, k500, k1000, k1000, …, all volumes)
o https://github.com/lkinman/MAVEn

▪ (Atomic)-model guided analysis of volume density (aka occupancy)
▪ Is there correlated heterogeneity of structural blocks? Which particle

subsets exhibit these structural features?
▪ Literature: https://www.nature.com/articles/s41594-023-01078-5

o https://github.com/lkinman/SIREn
▪ Model-free detection of correlated structural elements from a volume

ensemble
▪ What types of compositional heterogeneity are present in this volume

ensemble? Conformational heterogeneity?
▪ Literature: manuscript in preparation

o https://phenix-online.org/documentation/reference/varref.html
▪ Refinement of an atomic model into an ensemble of maps
▪ What questions can I better answer by parameterizing structural

heterogeneity with an atomic model ensemble?
▪ Literature: https://doi.org/10.1016/j.bbamem.2023.184133

• Refinements of isolated particle sets to confirm observed structural heterogeneity and
resolve to better resolution

o Relion 3D auto-refine
o M multispecies refinement (perhaps each species corresponds to a tomoDRGN-

separated distinct structural state)

• Your own custom downstream analysis!

https://github.com/lkinman/MAVEn
https://www.nature.com/articles/s41594-023-01078-5
https://github.com/lkinman/SIREn
https://phenix-online.org/documentation/reference/varref.html
https://doi.org/10.1016/j.bbamem.2023.184133

 40

Frequently asked questions
• What types of structural heterogeneity can tomoDRGN learn?

o TomoDRGN’s design provides minimal constraints to the type of structural
heterogeneity that can be learned. Generally, tomoDRGN will learn any features
present in the input images: proteins, RNA, membranes, etc. This means
tomoDRGN can theoretically learn both compositional and conformational
heterogeneity.

• How many epochs should I train my tomoDRGN model for? What do over/under fitting
look like?

o We have generally observed that models are well trained between 25 – 50
epochs of training, across different types of particles and dataset sizes spanning
500 – 25000 particles. An undertrained model may produce volumes that look
low resolution, homogeneous to each other, and potentially with artifacts like
spikes of density along the orthogonal axes. An overtrained model may produce
a latent space that initially contained distinct clusters but which have now
merged, and volumes that appear heavily oversharpened and may have spurious
density scattered throughout the box. We generally recommend to perform
model analysis on the first epoch at which the latent space and volume space
appear to have stabilized (note that this often does not correlate with a plateau
in the loss curve).

• My particles have been processed in [STOPGAP / RELION v4/v5 / Warp v2 / etc]. How
can I use them with tomoDRGN?

o TomoDRGN was initially developed to work with Warp and M (version 1). We are
actively working to expand the set of directly compatible STA software, but for
the moment this means particles input to tomoDRGN must be exported from
Warp or M as “particle series” subtomograms.

• My particle is symmetric, does that change how I should use tomoDRGN?
o TomoDRGN’s voxel-wise decoder module was not designed with symmetric

particles or symmetry operators in mind. We would like to implement this, but it
is not at the top of our current priority list. We recommend performing
symmetry relaxation to C1 (demonstrated for apoferritin in EMPIAR-10491 and
for HIV Gag in EMPIAR-10164), or symmetry expansion with signal subtraction to
the “asymmetric unit” of the symmetric particle.

• What resolution do I need to have by STA for tomoDRGN to be useful?
o We frequently use tomoDRGN early in good / bad particle filtration at resolutions

of up to ~10 to ~15 Å. Large compositional heterogeneity can be distinguished
around these resolutions. Finer compositional or conformational heterogeneity
usually requires better resolutions. Generally tomoDRGN should be viewed as

 41

tool to observe and generate hypotheses relating to structural heterogeneity, to
then be orthogonally validated and tested.

• How many particles do I need for tomoDRGN to be useful?
o We have run tomoDRGN and extracted useful results with datasets as small as

~500 particles (see Figure 6e of https://doi.org/10.1038/s41592-024-02210-z).
As mentioned above, these results should serve as hypothesis generating tools
and should be further validated.

• How large do particles need to be for tomoDRGN to be useful?
o We have used tomoDRGN on datasets of purified or partially purified complexes

spanning 500 – 3000 kDa, and on datasets of ribosomes in situ. We would love to
hear about other use cases of tomoDRGN!

• Does tomoDRGN refine particle poses for each structurally heterogeneous state?
o No, tomoDRGN does not refine particle poses. It can be thought of as (a very

powerful per-particle version of) 3-D classification without pose optimization.

• I don’t see any meaningful heterogeneity with tomoDRGN, what should I do?
o There are a few possible explanations for not seeing heterogeneity as the output

of tomoDRGN.
▪ Your model may be undertrained (in which case, train additional epochs)

or may have too small model capacity (in which case, train a new model
with a larger encoder, latent, and decoder dimensionality).

▪ Your input dataset may be too low resolution to distinguish features (in
which case, try to improve your particle count and resolution by STA).

▪ Your dataset may have too weak of signal for tomoDRGN to see, perhaps
due to low molecular weight particles, significant disorder in the particles,
substantial background signal, etc. These problems likely require
alternative sample preparation and dataset collection strategies to
mitigate.

▪ Your particle may exhibit heterogeneity of too small an amplitude for
tomoDRGN to detect (e.g. small shifts of individual loops).

▪ Your dataset may exhibit purely conformational heterogeneity which may
benefit from the “conservation of mass” regularization enforced by
heterogeneity analysis tools explicitly designed to resolve conformational
heterogeneity (TomoFlow, HEMNMA-3D, DeepHEMNMA, MDTOMO, etc).

▪ Your sample may contain no structural heterogeneity to speak of.

• How does tomoDRGN’s classification of “junk” particles compare to 3D / 2D classification
tools?

o Due to the extremely low SNR and absence of ground truth labels in
experimental datasets, it is extremely difficult to perform absolute performance
comparisons between different algorithmic approaches. However, in our hands,

https://doi.org/10.1038/s41592-024-02210-z

 42

tomoDRGN appears to be very effective at identifying and separating “junk”
particles. This is likely due to the highly expressive multidimensional latent space
and per-particle generative model as compared with enforcing all particles to be
sorted into k distinct classes.

 43

Supplemental: voxel_pca_umap.py
'''

Runs real space PCA on all volumes provided, runs UMAP on the first `--num-pcs` PCs, saves both results

to a pkl

Also plots and saves PCA relative variance, first 5 PCs against each other, and UMAP1 vs UMAP2

'''

import argparse

import os

import glob

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.decomposition import PCA

import umap

from tomodrgn import mrc, utils

def add_args(parser):

 parser.add_argument('--vol-dir', type=os.path.abspath, required=True, help='path to directory

containing volumes to analyze')

 parser.add_argument('--out-dir', type=os.path.abspath, required=True, help='path to directory to save

outputs')

 parser.add_argument('--num-pcs', type=int, default=128, help='keep this many PCs when saving PCA

and running UMAP')

 parser.add_argument('--mask-type', choices=['none', 'spherical'], default='spherical', help='binary real-

space mask to apply to each volume')

 parser.add_argument('--densmap', action='store_true', help='use the DensMAP flag to better preserve

local density during UMAP reduction')

 return parser

def main(args):

 # SETUP: assert vol-dir exists and is not empty, create outdir

 print('Validating inputs ...')

 assert os.path.isdir(args.vol_dir)

 os.makedirs(args.out_dir, exist_ok=True)

 # PREPROCESSING: create natural-sorted list of volumes to iterate through

 print('Finding volumes ...')

 vols_list = glob.glob(os.path.join(args.vol_dir, '*.mrc'))

 vols_list.sort(key=lambda x: int(os.path.basename(x).split('_')[-1].split('.mrc')[0])) # assumes naming

format `vol_001.mrc`

 box_size = mrc.parse_mrc(vols_list[0])[0].shape[0]

 # PREPROCESSING: prepare mask

 44

 print(f'Preparing mask of type {args.mask_type} ...')

 if args.mask_type == 'spherical':

 xx = np.linspace(-1, 1, box_size, endpoint=True if box_size % 2 == 1 else False)

 z, y, x = np.meshgrid(xx, xx, xx)

 coords = np.stack((x, y, z), -1)

 r = np.sum(coords ** 2, axis=-1) ** 0.5

 mask = np.where(r > 1, 0, 1).flatten().astype(bool)

 elif args.mask_type == 'none':

 mask = np.ones((box_size, box_size, box_size)).flatten().astype(bool)

 else:

 raise RuntimeError

 # PREPROCESSING: load volumes

 print('Loading and masking volumes ...')

 vols = np.zeros((len(vols_list), np.sum(mask)), dtype=np.float32)

 for i, vol in enumerate(vols_list):

 vol_unmasked = mrc.parse_mrc(vol)[0].flatten()

 vols[i] = vol_unmasked[mask]

 # PROCESSING: run PCA, keep first num_pcs, save pkl

 print('Running PCA ...')

 assert args.num_pcs <= vols.shape[1]

 pca = PCA(n_components=args.num_pcs, random_state=42, copy=False)

 pc = pca.fit_transform(vols)

 utils.save_pkl(pc, os.path.join(args.out_dir, 'voxel_pc.pkl'))

 # PLOTTING: plot and save relative PC variance

 print('Plotting explained variance ratio ...')

 x = np.arange(args.num_pcs)

 y = pca.explained_variance_ratio_

 fig, ax = plt.subplots(1, 1)

 ax.bar(x, y)

 ax.set_xlabel('principal components')

 ax.set_ylabel('explained variance ratio')

 plt.tight_layout()

 plt.savefig(os.path.join(args.out_dir, 'voxel_pc_explained-variance-ratio.png'))

 plt.close()

 # PLOTTING: plot and save first 4 PCs against each other

 print('Plotting first several PCs ...')

 max_n_pcs_plotted = 4

 for i in range(max_n_pcs_plotted - 1):

 for j in range(i + 1, max_n_pcs_plotted):

 x = pc[:, i]

 y = pc[:, j]

 fig, ax = plt.subplots(1, 1)

 if len(x) < 500:

 ax.scatter(x, y, s=0.1)

 45

 else:

 sns.jointplot(x=x, y=y, kind='kde', space=0)

 ax.set_xlabel(f'v-PC{i+1}')

 ax.set_ylabel(f'v-PC{j+1}')

 plt.tight_layout()

 plt.savefig(os.path.join(args.out_dir, f'voxel_pc_pc{i+1}-pc{j+1}.png'))

 plt.close()

 # PROCESSING: run UMAP, save pkl

 print(f'Running UMAP on first {args.num_pcs} PCs ...')

 reducer = umap.UMAP(densmap=args.densmap, random_state=42)

 embedding = reducer.fit_transform(pc)

 utils.save_pkl(embedding, os.path.join(args.out_dir, 'voxel_pc_umap.pkl'))

 # PLOTTING: plot and save UMAP1 vs UMAP2

 print('Plotting UMAP ...')

 x = embedding[:, 0]

 y = embedding[:, 1]

 fig, ax = plt.subplots(1, 1)

 if len(x) < 500:

 ax.scatter(x, y, s=0.1)

 else:

 sns.jointplot(x=x, y=y, kind='kde', space=0)

 ax.set_xlabel('v-UMAP1')

 ax.set_ylabel('v-UMAP2')

 plt.tight_layout()

 plt.savefig(os.path.join(args.out_dir, 'voxel_pc_umap1-umap2.png'))

 plt.close()

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description=__doc__,

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

 add_args(parser)

 main(parser.parse_args())

	Overview
	Table of Contents
	1. Initialize the computational environment
	Terminal-1 (tomoDRGN)
	Terminal-2 (tomoDRGN Jupyter notebook)
	Terminal-3 (RELION)
	Terminal-4 (ChimeraX)

	2. Obtain raw data
	From EMPIAR and Zenodo
	From particle extraction in Warp or M

	3. Validate particle extraction
	Purpose
	Performing a homogeneous reconstruction via backproject_voxel
	Terminal
	Chimerax:

	Performing a homogeneous reconstruction via train_nn
	Terminal

	4. Train a full tomoDRGN network
	Purpose
	Terminal

	5. Analyze the trained model to identify non-ribosomal particles
	Purpose
	Standard tomoDRGN model analysis
	Terminal:

	Identify non-ribosomal particles by visual inspection of k100 volumes
	ChimeraX

	Generate indices of good particles based on k100 annotation
	Jupyter notebook
	Terminal:

	6. Alternative visualizations and particle identification strategies
	Purpose
	Latent space analysis
	Jupyter notebook

	Volume space analysis
	Terminal

	7. Train a tomoDRGN network on a particle subset
	Purpose
	Terminal

	8. Identify ribosomal structural heterogeneity
	Purpose
	Standard tomoDRGN model analysis
	Terminal:

	Identify biologically interesting states by visual inspection of k100 volumes
	ChimeraX

	Generate 50S particle indices from k100 annotation
	Jupyter notebook
	Terminal:

	9. Validate interesting state particles
	Purpose
	Filter volume series star file by 50S particle indices
	Terminal

	Validate structural state of isolated particles
	Terminal

	10. Iterative identification and refinement of species in RELION / M
	Purpose
	Isolate 50S particles
	Run RELION 3D auto refine
	Terminal

	11. Train a tomoDRGN network on a particle subset at intermolecular scale
	Purpose
	Terminal

	12. Identify intermolecular structural heterogeneity
	Purpose
	Standard tomoDRGN model analysis
	Terminal

	Identify biologically interesting states by k100 visual inspection
	ChimeraX

	Generate membrane-bound ribosome indices from k100 annotation
	Jupyter notebook
	Terminal:

	13. Validate membrane-associated ribosomes
	Purpose
	Filter volume series star file by membrane-associated particle indices
	Terminal

	Re-extract memribo particles at intermolecular scale in Warp/M
	Validate isolated particles with traditional tools
	Terminal

	14. Map tomoDRGN-generated intermolecular volumes to tomogram spatial context
	Purpose
	Visualizing volumes in tomogram context colored by structural heterogeneity class
	Jupyter notebook
	Terminal
	Chimerax

	15. Map tomoDRGN-generated intramolecular volumes to tomogram spatial context
	Purpose
	Visualizing volumes in tomogram context colored by structural heterogeneity class
	Jupyter notebook
	Terminal
	Chimerax

	What might come next?
	Frequently asked questions
	Supplemental: voxel_pca_umap.py

