tomodrgn convergence_nn#
Purpose#
Evaluate similarity of a reference reconstruction to each reconstruction generated by train_nn
at specified epochs throughout training, calculated via map-map FSC.
Sample usage#
The examples below are adapted from tomodrgn/testing/commandtest*.py
, and rely on other outputs from commandtest.py
to execute successfully.
# Warp v1 style inputs
tomodrgn \
convergence_nn \
output/nn_classE_sim_dosetiltweightmask \
data/10076_classE_32.mrc \
--fsc-mask soft
# WarpTools style inputs
tomodrgn \
convergence_nn \
output/nn_warptools_70S_dosetiltweightmask \
data/warptools_test_box-32_angpix-12_reconstruct.mrc \
--fsc-mask soft
Arguments#
usage: convergence_nn [-h] [--max-epoch MAX_EPOCH] [--include-dc]
[--fsc-mask {none,sphere,tight,soft}]
[--plot-format {png,svgz}]
training_directory reference_volume
Positional Arguments#
- training_directory
train_nn directory containing reconstruct.N.mrc
- reference_volume
volume against which to calculate FSC
Named Arguments#
- --max-epoch
Maximum epoch for which to calculate FSCs
- --include-dc
Include FSC calculation for DC component, default False because DC component default excluded during training
Default:
False
- --fsc-mask
Possible choices: none, sphere, tight, soft
Type of mask applied to volumes before calculating FSC
Default:
'soft'
- --plot-format
Possible choices: png, svgz
File format with which to save plots
Default:
'png'
Common next steps#
Extend model training with
tomodrgn train_nn [...] --load latest
if not yet convergedTrain a heterogeneous model with
tomodrgn train_vae