tomodrgn eval_images#
Purpose#
Embed images to latent space using a pretrained train_vae
model (i.e. evaluating encoder modules only).
Sample usage#
The examples below are adapted from tomodrgn/testing/commandtest*.py
, and rely on other outputs from commandtest.py
to execute successfully.
# Warp v1 style inputs
tomodrgn \
eval_images data/10076_classE_32_sim.star \
--source-software cryosrpnt \
--weights output/vae_classE_sim_zdim8/weights.pkl \
-c output/vae_classE_sim_zdim8/config.pkl \
--out-z output/vae_classE_sim_zdim8/eval_images/z_all.pkl
# WarpTools style inputs
tomodrgn \
eval_images \
data/warptools_test_4-tomos_10-ptcls_box-32_angpix-12_optimisation_set.star \
--weights output/vae_warptools_70S_zdim8/weights.pkl \
-c output/vae_warptools_70S_zdim8/config.pkl \
--out-z output/vae_warptools_70S_zdim8/eval_images/z_all.pkl
Arguments#
usage: eval_images [-h] [-w WEIGHTS] -c CONFIG --out-z PKL
[--log-interval LOG_INTERVAL] [-b BATCH_SIZE] [-v]
[--no-amp]
[--source-software {auto,warp,cryosrpnt,nextpyp,cistem,warptools,relion}]
[--ind-ptcls PKL] [--ind-imgs IND_IMGS]
[--sort-ptcl-imgs {unsorted,dose_ascending,random}]
[--use-first-ntilts USE_FIRST_NTILTS]
[--use-first-nptcls USE_FIRST_NPTCLS] [--datadir DATADIR]
[--lazy] [--uninvert-data] [--num-workers NUM_WORKERS]
[--prefetch-factor PREFETCH_FACTOR] [--pin-memory]
particles
Positional Arguments#
- particles
Input particles (.mrcs, .star, or .txt)
Core arguments#
- -w, --weights
Model weights
- -c, --config
config.pkl file from train_vae
- --out-z
Output pickle for z
- --log-interval
Logging interval in N_IMGS
Default:
1000
- -b, --batch-size
Minibatch size
Default:
64
- -v, --verbose
Increases verbosity
Default:
False
- --no-amp
Disable use of automatic mixed precision
Default:
False
Override configuration values – star file#
- --source-software
Possible choices: auto, warp, cryosrpnt, nextpyp, cistem, warptools, relion
Manually set the software used to extract particles. Default is to auto-detect.
Default:
'auto'
- --ind-ptcls
Filter starfile by particles (unique rlnGroupName values) using np array pkl as indices
- --ind-imgs
Filter starfile by particle images (star file rows) using np array pkl as indices
- --sort-ptcl-imgs
Possible choices: unsorted, dose_ascending, random
Sort the star file images on a per-particle basis by the specified criteria
Default:
'unsorted'
- --use-first-ntilts
Keep the first use_first_ntilts images of each particle in the sorted star file.Default -1 means to use all. Will drop particles with fewer than this many tilt images.
Default:
-1
- --use-first-nptcls
Keep the first use_first_nptcls particles in the sorted star file. Default -1 means to use all.
Default:
-1
Override configuration values – data handling#
- --datadir
Path prefix to particle stack if loading relative paths from a .star or .cs file
- --lazy
Lazy loading if full dataset is too large to fit in memory
Default:
False
- --uninvert-data
Do not invert data sign
Default:
True
Dataloader arguments#
- --num-workers
Number of workers to use when batching particles for training. Has moderate impact on epoch time
Default:
0
- --prefetch-factor
Number of particles to prefetch per worker. Has moderate impact on epoch time
- --pin-memory
Whether to use pinned memory for dataloader. Has large impact on epoch time. Recommended.
Default:
False
Common next steps#
Analyze model at a particular epoch in latent space with
tomodrgn analyze
Analyze model at a particular epoch in volume space with
tomodrgn analyze_volumes
Generate volumes for all particles at a particular epoch with
tomodrgn eval_vol
Map back generated volumes (for all particles) to source tomograms to explore spatially contextualized heterogeneity with
tomodrgn subtomo2chimerax