tomodrgn.fft#

Fourier and Hartley transform functions for numpy arrays and pytorch tensors

Functions

fft2_center

Batch-vectorized 2-D DFT of an even-box sized image(s) as numpy array Note: numpy promotes default input dtype np.float32 to output dtype np.complex128

fft2_center_torch

Batch-vectorized 2-D DFT of an even-box sized image(s) as torch tensor Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

fft3_center

Batch-vectorized 3-D DFT of even-box sized volume(s) as numpy array Note: numpy promotes default input dtype np.float32 to output dtype np.complex128

fft3_center_torch

Batch-vectorized 3-D DFT of even-box sized volume(s) as torch tensor Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

ht2_center

Batch-vectorized 2-D DHT of an even-box sized image(s) as numpy array Uses relationship DHT(x) == DFT(x).real - DFT(x).imag == (DFT(x) * (1 + i)).real Note: numpy promotes default input dtype np.float32 to output dtype np.float64

ht2_center_torch

Batch-vectorized 2-D DHT of an even-box sized image(s) as torch tensor Uses relationship DHT(x) == DFT(x).real - DFT(x).imag == (DFT(x) * (1 + i)).real Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

ht3_center

Batch-vectorized 3-D DHT of even-box sized volume(s) as numpy array Uses relationship DHT(x) == DFT(x).real - DFT(x).imag == (DFT(x) * (1 + i)).real Note: numpy promotes default input dtype np.float32 to output dtype np.float64

ht3_center_torch

Batch-vectorized 3-D DHT of even-box sized volume(s) as torch tensor Uses relationship DHT(x) == DFT(x).real - DFT(x).imag == (DFT(x) * (1 + i)).real Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

ifft2_center

Batch-vectorized 2-D inverse DFT of an even-box sized image(s) as numpy array Note: numpy promotes default input dtype np.float32 to output dtype np.complex128

ifft2_center_torch

Batch-vectorized 2-D inverse DFT of an even-box sized image(s) as torch tensor Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

ifft3_center

Batch-vectorized 3-D inverse DFT of even-sized volume(s) as numpy array Note: numpy promotes input dtype np.float32 to output dtype np.complex128

ifft3_center_torch

Batch-vectorized 3-D inverse DFT of even-sized volume(s) as torch tensor Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

iht2_center

Batch-vectorized 2-D inverse DHT of an even-box sized image(s) as numpy array By definition, is equivalent to forward DHT up to normalization scale factor (of N samples, typically D*D here) Note: numpy promotes default input dtype np.float32 to output dtype np.float64

iht2_center_torch

Batch-vectorized 2-D inverse DHT of an even-box sized image(s) as torch tensor By definition, is equivalent to forward DHT up to normalization scale factor (of N samples, typically D*D here) Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

iht3_center

Batch-vectorized 3-D inverse DHT of even-sized volume(s) as numpy array Note: numpy promotes input dtype np.float32 to output dtype np.complex128

iht3_center_torch

Batch-vectorized 3-D inverse DHT of even-sized volume(s) as torch tensor Note: torch maintains default input dtype torch.float32 to output dtype torch.float32

symmetrize_ht

Mirror-pads an even-box DHT image (stack) such that DC is at D//2,D//2 and highest frequency is at both D//2,0 and D//2,D